Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter / Tate, Jillian R.

12 Issues per year


IMPACT FACTOR 2016: 3.432

CiteScore 2016: 2.21

SCImago Journal Rank (SJR) 2016: 1.000
Source Normalized Impact per Paper (SNIP) 2016: 1.112

Online
ISSN
1437-4331
See all formats and pricing
More options …
Volume 43, Issue 9

Issues

Apolipoprotein A5 and triglyceridemia. Focus on the effects of the common variants

Jaroslav A. Hubacek
  • Institute for Clinical and Experimental Medicine and Cardiovascular Research Centre, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2005-09-22 | DOI: https://doi.org/10.1515/CCLM.2005.153

Abstract

High plasma levels of triglycerides are an independent risk factor for the development of cardiovascular disease. Apolipoprotein A5 ( APOA5) is a new member of the apolipoprotein APOA1/C3/A4 gene cluster, found by comparative sequencing analysis. The importance of the APOA5 gene for determination of plasma triglyceride levels has been suggested by the creation of transgenic and knock-out mice (transgenic mice displayed significantly reduced triglycerides, whereas knock-out mice had a high level of triglycerides).

It has now been clearly established that distinct polymorphisms in the APOA5 gene consistently influence plasma triglycerides in a wide range of human populations, although some differences between ethnic groups and males and females were described.

The possible roles of APOA5 variants in determining the risk of myocardial infarction and coronary artery disease development, as well as in the determination of low-density lipoprotein-particle size or plasma concentrations of C-reactive protein and high-density lipoprotein-cholesterol, are also summarized.

Keywords: apolipoprotein A5; myocardial infarction; polymorphism; triglycerides

References

  • 1.

    Wu LL. Review of risk factors for cardiovascular diseases. Ann Clin Lab Sci 1999; 29: 27–33. Google Scholar

  • 2.

    Foerster JS. Triglycerides: risk factor or fellow traweler? Curr Opin Cardiol 2001; 16: 261–4. CrossrefGoogle Scholar

  • 3.

    Austin MA, King MC, Bawol RD, Hulley SB, Friedman GD. Risk factors for coronary heart disease in adult female twins. Genetic heritability and shared environmental influences. Am J Epidemiol 1987; 125: 308–18. CrossrefGoogle Scholar

  • 4.

    Heller DA, Pedersen NL, de Faire U, McClearn GE. Genetic and environmental correlations among serum lipids and apolipoproteins in elderly twins reared together and apart. Am J Hum Genet 1993; 55: 1255–67. Google Scholar

  • 5.

    Bodnar JS, Chatterjee A, Castellani LW, Ross DA, Ohmen J, Cavalcoli J, et al. Positional cloning of the combined hyperlipidemia gene Hyplip1. Nat Genet 2002; 30: 110–6. CrossrefGoogle Scholar

  • 6.

    Broeckel U, Hengstenberg C, Mayer B, Holmer S, Martin LJ, Comuzzie AG, et al. A comprehensive linkage analysis for myocardial infarction and its related risk factors. Nat Genet 2002; 30: 210–21. CrossrefGoogle Scholar

  • 7.

    Gehrisch S. Common mutations of the lipoprotein lipase gene and their clinical significance. Curr Atheroscler Rep 1999; 1: 70–8. CrossrefGoogle Scholar

  • 8.

    Cohen JC, Vega GL, Grundy SM. Hepatic lipase: new insights from genetic and metabolic studies. Curr Opin Lipidol 1999; 10: 259–67. CrossrefGoogle Scholar

  • 9.

    Talmud PJ, Humphries SE. Genetic polymorphisms, lipoproteins and coronary artery disease risk. Curr Opin Lipidol 2001; 12: 405–9. CrossrefGoogle Scholar

  • 10.

    Hubacek JA, Waterworth DM, Poledne R, Pitha J, Skodova Z, Humphries SE, et al. Genetic determination of plasma lipids and insulin in the Czech population. Clin Biochem 2001; 34: 113–8. CrossrefGoogle Scholar

  • 11.

    Buzza M, Fripp Y, Mitchell RJ. Apolipoprotein AI and CIII gene polymorphisms and their association with lipid levels in Italian, Greek and Anglo-Irish populations of Australia. Ann Hum Biol 2001; 28: 481–90. CrossrefGoogle Scholar

  • 12.

    Russo GT, Meigs JB, Cupples LA, Demissie S, Otvos JD, Wilson PW, et al. Association of the Sst-I polymorphism at the APOC3 gene locus with variations in lipid levels, lipoprotein subclass profiles and coronary heart disease risk: the Framingham offspring study. Atherosclerosis 2001; 158: 173–81. Google Scholar

  • 13.

    Pennacchio LA, Olivier M, Hubacek JA, Cohen JC, Cox DR, Fruchart JC, et al. An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science 2001; 294: 169–73. Google Scholar

  • 14.

    Pennacchio LA, Rubin EM. Apolipoprotein A5, a newly identified gene that affects plasma triglyceride levelsin humans and mice. Arterioscler Thromb Vasc Biol 2003; 23: 529–34. CrossrefGoogle Scholar

  • 15.

    Seda O, Sedova L. New apolipoprotein A-V: comparative genomics meets metabolism. Physiol Res 2003; 52: 141–6. Google Scholar

  • 16.

    Bohuslavova R, Hubacek JA, Kadlecova M, Zicha J, Kunes J. Apolipoprotein AV expression in Prague hypertriglyceridemic rats [abstract]. Atherosclerosis 2005;Suppl 6: 22. Google Scholar

  • 17.

    Obrien PJ, Alborn WE, Sloan JH, Ulmer M, Boodhoo A, Knierman MD, et al. The novel apolipoprotein A5 is present in human serum, is associated with VLDL, HDL, and chylomicrons, and circulates at very low concentrations compared with other apolipoproteins. Clin Chem 2005; 51: 351–9. CrossrefGoogle Scholar

  • 18.

    Baroukh N, Bauge E, Akiyama J, Chang J, Afzal V, Fruchart JC, et al. Analysis of apolipoprotein A5, C3, and plasma triglyceride concentrations in genetically engineered mice. Arterioscler Thromb Vasc Biol 2004; 24: 1297–302. CrossrefGoogle Scholar

  • 19.

    Schaap FG, Rensen PC, Voshol PJ, Vrins C, van der Vliet HN, Chamuleau RA, et al. ApoAV reduces plasma triglycerides by inhibiting very low density lipoprotein-triglyceride (VLDL-TG) production and stimulating lipoprotein lipase-mediated VLDL-TG hydrolysis. J Biol Chem 2004; 279: 27941–7. CrossrefGoogle Scholar

  • 20.

    Fruchart-Najib J, Bauge E, Niculescu LS, Pham T, Thomas B, Rommens C, et al. Mechanism of triglyceride lowering in mice expressing human apolipoprotein A5. Biochem Biophys Res Commun 2004; 319: 397–404. Google Scholar

  • 21.

    Oliva CP, Pisciotta L, Li Volti G, Sambataro MP, Cantafora A, Bellocchio A, et al. Inherited apolipoprotein A-V deficiency in severe hypertriglyceridemia. Arterioscler Thromb Vasc Biol 2005; 25: 411–7. CrossrefGoogle Scholar

  • 22.

    Kao JT, Wen HC, Chin KL, Hsu HC, Lin SW. A novel genetic variant in the apolipoprotein A5 is associated with hypertriglyceridemia. Hum Mol Genet 2003; 13: 2533–9. CrossrefGoogle Scholar

  • 23.

    Pennacchio LA, Olivier M, Hubacek JA, Krauss RM, Rubin EM, Cohen JC. Two independent apolipoprotein AV haplotypes influence human plasma triglyceride levels. Hum Mol Genet 2002; 11: 3031–8. CrossrefGoogle Scholar

  • 24.

    Talmud PJ, Hawe E, Martin S, Olivier M, Miller GJ, Rubin EM, et al. Relative contribution of variation within the APOC3/A4/A5 gene cluster in determining plasma triglycerides. Hum Mol Genet 2002; 11: 3039–46. CrossrefGoogle Scholar

  • 25.

    Klos KL, Hamon S, Clark AG, Boerwinkle E, Liu K, Sing CF. APOA5 polymorphisms influence plasma triglycerides in young, healthy African Americans and whites of the CARDIA study. J Lipid Res 2005; 46: 564–70. Google Scholar

  • 26.

    Hubáček JA, Škodová Z, Adámková V, Vrablik M, Horinek A, Lanska V, et al. APOAV polymorphisms (T-1131/C and Ser19/Trp) influence plasma triglyceride levels and risk of myocardial infarction. Exp Clin Cardiol 2003; 8: 151–4. Google Scholar

  • 27.

    Hubáček JA, Škodová Z, Adámková V, Lánská V, Poledne R. The influence of APOAV polymorphisms (T-1131>C and S19>W) on plasma triglyceride levels and risk of myocardial infarction. Clin Genet 2004; 65: 126–30. Google Scholar

  • 28.

    Lai CQ, Demissie S, Cupples LA, Zhu Y, Adiconis X, Parnell LD, et al. Influence of the APOA5 locus on plasma triglyceride, lipoprotein subclasses, and CVD risk in the Framingham Heart Study. J Lipid Res 2004; 45: 2096–105. CrossrefGoogle Scholar

  • 29.

    Nabika T, Nasreen S, Kobayashi S, Mazura J. The genetic effect of the apoprotein AV gene on the serum triglyceride level in Japanese. Atherosclerosis 2002; 16: 201–4. CrossrefGoogle Scholar

  • 30.

    Endo K, Yanagi H, Araki J, Hirano C, Yamakawa-Kobayashi K, Tomura S. Association found between the promoter region polymorphism in the apolipoprotein A-V gene and the serum triglyceride level in Japanese schoolchildren. Hum Genet 2002; 111: 570–2. CrossrefGoogle Scholar

  • 31.

    Baum L, Tomlinson B, Thomas GN. APOA5 -1131T→C polymorphism is associated with triglyceride levels in Chinese men. Clin Genet 2003; 63: 377–9. CrossrefGoogle Scholar

  • 32.

    Lai CQ, Tai ES, Tan CE, Cutter J, Cheb SK, Zhu YP, et al. The APOA5 locus is a strong determinant of plasma triglyceride concentrations across ethnic groups in Singapore. J Lipid Res 2003; 44: 2365–73. CrossrefGoogle Scholar

  • 33.

    Bi N, Yan SK, Li GP, Yin ZN, Chen BS. A single nucleotide polymorphism -1131T>C in the apolipoprotein A5 gene is associated with an increased risk of coronary artery disease and alters triglyceride metabolism in Chinese. Mol Genet Metab 2004; 83: 280–6. Google Scholar

  • 34.

    Evans D, Buchwald A, Beil FU. The single nucleotide polymorphism -1131T>C in the apolipoprotein A5 (APOA5) gene is associated with elevated triglycerides in patients with hyperlipidemia. J Mol Med 2003; 81: 645–54. Google Scholar

  • 35.

    Talmud PJ, Palmen J, Putt W, Lins L, Humphries SE. Determination of the functionality of common APOA5 polymorphisms. J Biol Chem 2005; 280: 28215–20. CrossrefGoogle Scholar

  • 36.

    Liu H, Zhang S, Lin J, Li H, Huang A, Li X, et al. Association between DNA variant sites in the apolipoprotein A5 gene and coronary heart disease in Chinese. Metabolism 2005; 54: 568–72. CrossrefGoogle Scholar

  • 37.

    Lee KW, Ayyobi AF, Frohlich JJ, Hill JS. APOA5 gene polymorphism modulates levels of triglyceride, HDL cholesterol and FERHDL but is not a risk factor for coronary artery disease. Atherosclerosis 2004; 176: 165–72. CrossrefGoogle Scholar

  • 38.

    Hubacek JA, Škodová Z, Adámková V, Lánská V, Poledne R. Sex-specific effect of APOAV variant (Val153>Met) on plasma levels of HDL-cholesterol. Metabolism 2005. In press. Google Scholar

  • 39.

    Hubáček JA, Adámková V, ČeŠka R, Poledne R, Hořínek A, Vráblík M. New variants in the apolipoprotein AV gene in individuals with extreme triglyceride levels. Physiol Res 2004; 53: 225–8. Google Scholar

  • 40.

    Hubacek JA, Zeng W, Skodova Z, Vrablik M, Talmud PJ. APOAV variant Ala315>Val has no effect on plasma triacylglycerols in a Czech male cohort [abstract]. Atherosclerosis 2005;Suppl 6: 24. Google Scholar

  • 41.

    Schaefer JR, Sattler AM, Hackler B, Kurt B, Hackler R, Maisch B, et al. Hyperlipidemia in patients with apolipoprotein E 2/2 phenotype: apolipoprotein A5 S19W as a cofactor. Clin Chem 2004; 50: 2214. CrossrefGoogle Scholar

  • 42.

    Hubacek JA, Horinek A, Skodova Z, Adamkova V, Ceska R, Zlatohlavek L, et al. Hypertriglyceridemia – interaction between APOE and APOAV variants. Clin Chem 2005; 51: 1311–3. CrossrefGoogle Scholar

  • 43.

    Li GP, Wang JY, Yan SK, Chen BS, Xue H, Wu G. Genetic effect of two polymorphisms in the apolipoprotein A5 gene and apolipoprotein C3 gene on serum lipids and lipoprotein levels in a Chinese population. Clin Genet 2004; 65: 470–6. CrossrefGoogle Scholar

  • 44.

    Szalai C, Keszei M, Duba J, Proházska Z, Kozma GT, Csásár A, et al. Polymorphism in the promoter region of the apolipoprotein A5 gene is associated with an increased susceptibility for coronary artery disease. Atherosclerosis 2004; 173: 109–14. Google Scholar

  • 45.

    Ribalta J, Figuera L, Fernandez-Ballart J, Vilella E, Cabezas MC, Masana L, et al. Newly identified apolipoprotein AV gene predisposes to high plasma triglycerides in familial combined hyperlipidemia. Clin Chem 2002; 48: 1597–600. Google Scholar

  • 46.

    Hořínek A, Vráblík M, Češka R, Adámková V, Poledne R, Hubacek JA. T-1131 → C polymorphism within the apolipoprotein AV gene in hypertriglyceridemic individuals. Atherosclerosis 2003; 167: 369–70. Google Scholar

  • 47.

    Vráblík M, Hořínek A, Češka R, Adámková V, Poledne R, Hubáček JA. Ser19 → Trp polymorphism within the apolipoprotein AV gene in hypertriglyceridemic people. J Med Genet 2003; 40: e105. Google Scholar

  • 48.

    Hubáček JA, Kovář J, Škodová Z, Pitha J, Lanska V, Poledne R. Genetic analysis of APOAV polymorphisms (T-1131 → C, Ser19 → Trp and Val153 → Met): no effect on plasma remnant particles concentrations. Clin Chim Acta 2004; 348: 171–5. Google Scholar

  • 49.

    Jang Y, Kim JY, Kim OY, Lee JE, Cho H, Ordovas JM, et al. The -1131T → C polymorphism in the apolipoprotein A5 gene is associated with postprandial hypertriacylglycerolemia; elevated small, dense LDL con- and oxidative stress in nonobese Korean men. Am J Clin Nutr 2004; 80: 832–40. Google Scholar

  • 50.

    Hubacek JA, Škodová Z, Lánská V, Stávek P, Adámková V, Poledne R. Apolipoprotein AV variants don't affect C-reactive protein levels in Caucasian males. Physiol Res 2005. In press. Google Scholar

  • 51.

    Martin S, Nicaud V, Humphries SE, Talmud PJ, EARS group. Contribution of APOA5 gene variants to plasma triglyceride determination and to the response to both fat and glucose tolerance challenges. Biochim Biophys Acta 2003; 1637: 217–25. Google Scholar

  • 52.

    Masana L, Ribalta J, Salazar J, Fernandez-Ballart J, Joven J, Cabezas MC. The apolipoprotein AV gene and diurnal triglyceridaemia in normolipidemic subjects. Clin Chem Lab Med 2003; 41: 517–21. CrossrefGoogle Scholar

  • 53.

    Austin MA, Talmud PJ, Farin FM, Nickerson DA, Edwards KL, Leonetti D, et al. Association of apolipoprotein A5 variants with LDL particle size and triglyceride in Japanese Americans. Biochim Biophys Acta 2004; 1688: 1–9. Google Scholar

  • 54.

    Esteve E, Faure E, Calvo F, Aguillo E, Blasco C, Roche MJ, et al. SNP3 polymorphism in apo A-V gene is associated with small dense LDL particles in type 2 diabetes. Diabetologia 2004; 47: 355–6. CrossrefGoogle Scholar

  • 55.

    Mar R, Pajukanta P, Allayee H, Groenendijk M, Dallinga-Thie G, Krauss RM, et al. Association of the apolipoprotein A1/C3/A4/A5 gene cluster with triglyceride levels and LDL particle size in familial combined hyperlipidemia. Circ Res 2004; 94: 993–9. CrossrefGoogle Scholar

  • 56.

    Ward KJ, Shields B, Knight B, Salzmann MB, Hattersley AT, Frayling TM. Genetic variants in apolipoprotein AV alter triglyceride concentrations in pregnancy. Lipids Health Dis 2003; 2: 9. Google Scholar

  • 57.

    Hubacek JA, Skodova Z, Adamkova V, Lanska V, Bobkova D, Poledne R. APOAV (T-1131>C) variant has no effect on mother's height in a large population study. Lipids Health Dis 2004; 3: 10. Google Scholar

  • 58.

    Chiu KC, Chiu YF, Boyadjian AA, Fernando S, Kwan C, Chuang LM. Impact of apolipoprotein A5 polymorphisms on insulin sensitivity and beta-cell function. Pancreas 2005; 30: 328–32. CrossrefGoogle Scholar

About the article

Corresponding author: Jaroslav A. Hubacek, IKEM-CEM-LMG, Videnska 1958/9, 140 21 Prague 4, Czech Republic Phone: +420-261-363-367, Fax: +420-241-721-574,


Received: 2005-01-14

Accepted: 2005-07-04

Published Online: 2005-09-22

Published in Print: 2005-09-01


Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), Volume 43, Issue 9, Pages 897–902, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/CCLM.2005.153.

Export Citation

©2005 by Walter de Gruyter Berlin New York. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Christopher T. Johansen, Sekar Kathiresan, and Robert A. Hegele
Journal of Lipid Research, 2011, Volume 52, Number 2, Page 189
[2]
Isabella Sundl, Montse Guardiola, Gholamali Khoschsorur, Rosa Solà, Joan C. Vallvé, Gemma Godàs, Lluís Masana, Michaela Maritschnegg, Andreas Meinitzer, Nicolas Cardinault, Johannes M. Roob, Edmond Rock, Brigitte M. Winklhofer-Roob, and Josep Ribalta
Journal of Lipid Research, 2007, Volume 48, Number 11, Page 2506
[3]
Stefan K. Nilsson, Stine Christensen, Merete K. Raarup, Robert O. Ryan, Morten S. Nielsen, and Gunilla Olivecrona
Journal of Biological Chemistry, 2008, Volume 283, Number 38, Page 25920
[5]
María-José Ariza, Miguel-Ángel Sánchez-Chaparro, Francisco-Javier Barón, Ana-María Hornos, Eva Calvo-Bonacho, José Rioja, Pedro Valdivielso, José-Antonio Gelpi, and Pedro González-Santos
BMC Medical Genetics, 2010, Volume 11, Number 1
[6]
Jean Dallongeville, Dominique Cottel, Aline Wagner, Pierre Ducimetière, Jean-Bernard Ruidavets, Dominique Arveiler, Annie Bingham, Jean Ferrières, Philippe Amouyel, and Aline Meirhaeghe
BMC Medical Genetics, 2008, Volume 9, Number 1
[7]
Elina Suviolahti, Heidi E. Lilja, and Päivi Pajukanta
Annals of Medicine, 2006, Volume 38, Number 5, Page 337
[8]
Mohammad M.H. Abdullah, Peter J.H. Jones, and Peter K. Eck
Nutrition Reviews, 2015, Volume 73, Number 8, Page 523
[9]
Montse Guardiola, Montserrat Cofán, Isabel de Castro-Oros, Ana Cenarro, Núria Plana, Philippa J. Talmud, Lluís Masana, Emilio Ros, Fernando Civeira, and Josep Ribalta
Atherosclerosis, 2015, Volume 240, Number 1, Page 98
[10]
Hyo Hee Lim, Miok Choi, Ji Young Kim, Jong Ho Lee, and Oh Yoen Kim
Nutrition Research, 2014, Volume 34, Number 10, Page 827
[11]
J.A. Hubacek, A. Peasey, R. Kubinova, H. Pikhart, and M. Bobak
Nutrition, Metabolism and Cardiovascular Diseases, 2014, Volume 24, Number 3, Page 243
[12]
Cun-Fei Liu, Qun-Fang Yang, Xing-Lin Chen, and Cheng-Yun Liu
Genetic Testing and Molecular Biomarkers, 2012, Volume 16, Number 10, Page 1241
[13]
David Evans, Jens Aberle, and Frank-Ulrich Beil
Expert Review of Cardiovascular Therapy, 2011, Volume 9, Number 5, Page 637
[14]
[15]
J.A. Hubacek, Z. Škodová, V. Adámková, V. Lánská, and J. Pitha
Clinical Biochemistry, 2006, Volume 39, Number 2, Page 133
[17]
María José Ariza, Ana María Hornos, Francisco Javier Barón, Eva Calvo-Bonacho, José Rioja, Pedro Valdivielso, Juan Carlos Sainz-Gutierrez, Montserrat Ruiz-Moraga, José Antonio Gelpi, Pedro González-Santos, and Miguel Ángel Sánchez-Chaparro
Clínica e Investigación en Arteriosclerosis, 2011, Volume 23, Number 2, Page 62
[18]
Montse Guardiola, Adriana Álvaro, Joan Carles Vallvé, Roser Rosales, Lluís Masana, and Josep Ribalta
Clínica e Investigación en Arteriosclerosis, 2008, Volume 20, Number 4, Page 129
[19]
Montse Guardiola, Mònica Tous, Joan Carles Vallvé, Anna Rull, Lluís Masana, Jorge Joven, and Josep Ribalta
Clínica e Investigación en Arteriosclerosis, 2007, Volume 19, Number 1, Page 22
[20]
Ki Ho Lee, Oh Yoen Kim, Hyo Hee Lim, Young Jin Lee, Yangsoo Jang, and Jong Ho Lee
Metabolism, 2010, Volume 59, Number 11, Page 1583
[21]
Kuo-Liong Chien, Ming-Fong Chen, Hsiu-Ching Hsu, Ta-Chen Su, Wei-Tien Chang, Chii-Ming Lee, and Yuan-Teh Lee
Clinica Chimica Acta, 2008, Volume 388, Number 1-2, Page 78
[22]
Eva Boes, Stefan Coassin, Barbara Kollerits, Iris M. Heid, and Florian Kronenberg
Experimental Gerontology, 2009, Volume 44, Number 3, Page 136
[23]
Seema Bhaskar, Mala Ganesan, Giriraj Ratan Chandak, Radha Mani, Mohammed M. Idris, Nasaruddin Khaja, Suryaprakash Gulla, Uday Kumar, Sireesha Movva, Kiran K. Vattam, Kavita Eppa, Qurratulain Hasan, and Umamaheshwara Reddy Pulakurthy
Genetic Testing and Molecular Biomarkers, 2011, Volume 15, Number 7-8, Page 507
[24]
Cesare R. Sirtori, Giuliana Mombelli, Michela Triolo, and Reijo Laaksonen
Annals of Medicine, 2012, Volume 44, Number 5, Page 419
[25]
Anita Maász, Zoltán Szolnoki, László Balikó, and Béla Melegh
Orvosi Hetilap, 2011, Volume 152, Number 12, Page 455
[26]
Jaroslav A. Hubacek, Romana Bohuslavova, Zdena Skodova, Jan Pitha, Dagmar Bobkova, and Rudolf Poledne
Clinical Chemical Laboratory Medicine, 2007, Volume 45, Number 3
[27]
Josefa Girona, Montse Guardiola, Anna Cabré, Josep M. Manzanares, Mercedes Heras, Josep Ribalta, and Lluís Masana
Clinical Chemistry and Laboratory Medicine, 2008, Volume 46, Number 4
[28]
Jaroslav A. Hubacek, Wu-Wei Wang, Zdena Škodová, Věra Adámková, Michal Vráblík, Aleš Hořínek, Tomáš Štulc, Richard Češka, and Philippa J. Talmud
Clinical Chemistry and Laboratory Medicine, 2008, Volume 46, Number 6
[29]
Evrim Komurcu-Bayrak, Altan Onat, Mehves Poda, Steve E. Humphries, Jutta Palmen, Filiz Guclu, Gunay Can, and Nihan Erginel-Unaltuna
Clinical Chemistry and Laboratory Medicine, 2008, Volume 46, Number 6
[30]
Michal Vrablik and Jaroslav A Hubacek
Clinical Lipidology, 2010, Volume 5, Number 4, Page 543
[31]
Jaroslav A Hubacek, Vera Adamkova, Martina Prusikova, Michaela Snejdrlova, Katerina Hirschfeldova, Vera Lanska, Richard Ceska, and Michal Vrablik
Pharmacogenomics, 2009, Volume 10, Number 6, Page 945
[32]
Jaroslav A Hubacek, Věra Lánská, Zdena Škodová, Věra Adámková, and Rudolf Poledne
European Journal of Human Genetics, 2008, Volume 16, Number 1, Page 135

Comments (0)

Please log in or register to comment.
Log in