Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter / Tate, Jillian R.

12 Issues per year


IMPACT FACTOR 2016: 3.432

CiteScore 2016: 2.21

SCImago Journal Rank (SJR) 2016: 1.000
Source Normalized Impact per Paper (SNIP) 2016: 1.112

Online
ISSN
1437-4331
See all formats and pricing
More options …
Volume 44, Issue 10 (Oct 2006)

Issues

The importance of metrological traceability on the validity of creatinine measurement as an index of renal function: International Federation of Clinical Chemistry and Laboratory Medicine (IFCC)

Mauro Panteghini
  • Cattedra di Biochimica Clinica e Biologia Molecolare Clinica, Dipartimento di Scienze Cliniche “Luigi Sacco”, Università degli Studi di Milano, Milan, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gary L. Myers
  • Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ W. Greg Miller
  • Department of Pathology, Virginia Commonwealth University, Richmond, VA, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Neil Greenberg /
Published Online: 2011-09-21 | DOI: https://doi.org/10.1515/CCLM.2006.234

Abstract

The glomerular filtration rate (GFR) is currently considered the best overall index of kidney function. The possibility that laboratories might routinely report an estimated GFR has become practically feasible with the development of a formula, the “four-variable” Modification of Diet in Renal Disease study (MDRD) equation that uses age, sex, race, and serum creatinine parameters. However, a limitation of this equation for general implementation in healthcare is related to the use of differently calibrated creatinine measurement procedures among laboratories. The only way to achieve universal implementation of the GFR prediction equation, with the associated clinical benefits for patients, is, therefore, to promote worldwide standardization of methods to determine creatinine, together with the introduction of a revised GFR-estimating equation appropriate for use with standardized creatinine methods.

Clin Chem Lab Med 2006;44:1287–92.

Keywords: calibration; creatinine; glomerular filtration rate; kidney function tests; reference standards; traceability

References

  • 1.

    El Nahas AM, Bello AK. Chronic kidney disease: the global challenge. Lancet 2005; 365:331–40.Google Scholar

  • 2.

    Myers GL, Miller WG, Coresh J, Fleming J, Greenberg N, Greene T, et al. Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program. Clin Chem 2006; 52:5–18.CrossrefGoogle Scholar

  • 3.

    Coresh J, Astor BC, Greene T, Eknoyan G, Levey AS. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am J Kidney Dis 2003; 41:1–12.CrossrefGoogle Scholar

  • 4.

    National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Kidney Disease Outcome Quality Initiative. Am J Kidney Dis 2002;39:S1–246.Google Scholar

  • 5.

    Levey AS, Eckardt KU, Tsukamoto Y, Levin A, Coresch J, Rossert J, et al. Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 2005; 67:2089–100.CrossrefGoogle Scholar

  • 6.

    Flynn FV. Assessment of renal function: selected developments. Clin Biochem 1990; 23:49–54.CrossrefGoogle Scholar

  • 7.

    Cohen EP, Lemann J. The role of the laboratory in evaluation of kidney function. Clin Chem 1991; 37:785–96.Google Scholar

  • 8.

    Swan SK. The search continues – an ideal marker of GFR. Clin Chem 1997; 43:913–4.Google Scholar

  • 9.

    Perrone RD, Madias NE, Levey AS. Serum creatinine as an index of renal function: new insights into old concepts. Clin Chem 1992; 38:1933–53.Google Scholar

  • 10.

    Price CP, Finney H. Developments in the assessment of glomerular filtration rate. Clin Chim Acta 2000; 297:55–66.Google Scholar

  • 11.

    Larsson A. Cystatin C: an emerging glomerular filtration rate marker. Scand J Clin Lab Invest 2005; 65:89–91.CrossrefGoogle Scholar

  • 12.

    Stevens LA, Levey AS. Chronic kidney disease in the elderly – how to assess risk? N Engl J Med 2005; 352:2122–4.Google Scholar

  • 13.

    Lamb EJ, Tomson CR, Roderick PJ. Estimating kidney function in adults using formulae. Ann Clin Biochem 2005; 42:321–45.CrossrefGoogle Scholar

  • 14.

    Levey AS, Greene T, Kusek JW, Beck GJ, Group MS. A simplified equation to predict glomerular filtration rate from serum creatinine. J Am Soc Nephrol 2000; 11:A0828.Google Scholar

  • 15.

    Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D, et al. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med 1999; 130:461–70.Google Scholar

  • 16.

    Lewis J, Agodoa L, Cheek D, Greene T, Middleton J, O'Connor D, et al. African-American Study of Hypertension and Kidney Disease. Comparison of cross-sectional renal function measurements in African Americans with hypertensive nephrosclerosis and of primary formulas to estimate glomerular filtration rate. Am J Kidney Dis 2001; 38:744–53.CrossrefGoogle Scholar

  • 17.

    Coresh J, Astor BC, McQuillan G, Kusek J, Greene T, Van Lente F, et al. Calibration and random variation of the serum creatinine assay as critical elements of using equations to estimate glomerular filtration rate. Am J Kidney Dis 2002; 39:920–9.CrossrefGoogle Scholar

  • 18.

    Wuyts B, Bernard D, Van Den Noortgate N, Van De Valle J, Van Vlem B, De Smet R, et al. Reevaluation of formulas for predicting creatinine clearance in adults and children, using compensated creatinine methods. Clin Chem 2003; 49:1011–4.CrossrefGoogle Scholar

  • 19.

    Lamb EJ, Wood J, Stowe HJ, O'Riordan SE, Webb MC, Dalton RN. Susceptibility of glomerular filtration rate estimations to variations in creatinine methodology: a study in older patients. Ann Clin Biochem 2005; 42:11–8.CrossrefGoogle Scholar

  • 20.

    Hallan S, Asberg A, Lindberg M, Johnsen H. Validation of the Modification of Diet in Renal Disease formula for estimating GFR with special emphasis on calibration of the serum creatinine assay. Am J Kidney Dis 2004; 44:84–93.CrossrefGoogle Scholar

  • 21.

    McKillop DJ, Cairns B, Duly E, Van Drimmelen M, Ryan M. The effect of serum creatinine method choice on estimated glomerular filtration rate determined by the abbreviated MDRD formula. Ann Clin Biochem 2006; 43:220–2.CrossrefGoogle Scholar

  • 22.

    Van Biesen W, Vanholder R, Veys N, Verbeke F, Delanghe J, De Bacquer D, et al. The importance of standardization of creatinine in the implementation of guidelines and recommendations for CKD: implications for CKD management programmes. Nephrol Dial Transplant 2006; 21:77–83.Google Scholar

  • 23.

    Seccombe DW, Tholen D, Jacobson BE. Standardization of creatinine: a pre-requisite for implementing the MDRD formula for the estimation of glomerular filtration rate (eGFR). Clin Chem 2005; 51(Suppl):A44.Google Scholar

  • 24.

    Miller WG, Myers GL, Ashwood ER, Killeen AA, Wang E, Thienpont LM, et al. Creatinine measurement: state of the art in accuracy and inter-laboratory harmonization. Arch Pathol Lab Med 2005; 129:297–304.Google Scholar

  • 25.

    Panteghini M, Forest JC. Standardization in laboratory medicine: new challenges. Clin Chim Acta 2005; 355:1–12.Google Scholar

  • 26.

    Siekmann L. Measurement of creatinine in human serum by isotope dilution mass spectrometry. J Clin Chem Clin Biochem 1985; 23:137–44.Google Scholar

  • 27.

    Welch MJ, Cohen A, Hertz HS, Ng KJ, Schaffer R, Van Der Lijn P, et al. Determination of serum creatinine by isotope dilution mass spectrometry as a candidate definitive method. Anal Chem 1986; 58:1681–5.CrossrefGoogle Scholar

  • 28.

    Stöckl D, Reinauer H. Candidate reference methods for the determination of target values for cholesterol, creatinine, uric acid and glucose in external quality assessment and internal accuracy control. I. Method setup. Clin Chem 1993; 39:993–1000.Google Scholar

  • 29.

    Stokes P, O'Connor G. Development of a liquid chromatography-mass spectrometry method for the high-accuracy determination of creatinine in serum. J Chromatogr B 2003; 794:125–36.Google Scholar

  • 30.

    Séronie-Vivien S, Galteau MM, Carlier MC, Hadj-Aissa A, Hanser AM, Hym B, et al. Impact of standardized calibration on the inter-assay variation of 14 automated assays for the measurement of creatinine in human serum. Clin Chem Lab Med 2005; 43:1227–33.Google Scholar

  • 31.

    Miller WG, Myers GL, Rej R. Why commutability matters. Clin Chem 2006; 52:553–4.CrossrefWeb of ScienceGoogle Scholar

  • 32.

    Clinical and Laboratory Standards Institute. Metrological traceability and its implementation; A report. CLSI document X5-R. Wayne, PA: CLSI, 2006.Google Scholar

  • 33.

    Clinical and Laboratory Standards Institute. Preparation and validation of commutable frozen human serum pools as secondary reference materials for cholesterol measurement procedures; Approved guideline. CLSI document C37-A. Wayne, PA: CLSI, 1999.Google Scholar

  • 34.

    Levey AS, Coresh J, Greene T, Marsh J, Stevens LA, Kusek J, et al. Expressing the MDRD study equation for estimating GFR with IDMS traceable (gold standard) serum creatinine values. J Am Soc Nephrol 2005; 16:69a.Google Scholar

  • 35.

    Directive 98/79/EC of the European Parliament and of the Council of 27 October 1998 on in vitro diagnostic medical devices. Off J Eur Communities L 1998;L331:1–37.Google Scholar

  • 36.

    Örnemark U, Van Nevel L, Smeyers P, Harper C, Taylor PD. The international Measurement Evaluation Program IMEP-17. Trace and minor constituents in human serum. EUR 20694 EN. Report to participants. Part 2: Methodology and quantity specifications. www.imep.ws. Accessed June 12, 2006.Google Scholar

  • 37.

    Junge W, Wilke B, Halabi A, Klein G. Determination of reference intervals for serum creatinine, creatinine excretion and creatinine clearance with an enzymatic and a modified Jaffé method. Clin Chim Acta 2004; 344:137–48.Google Scholar

  • 38.

    Khatami Z, Dey D, Handley G, Klein G, Nagel R, Becher D. In the name of traceability. Author's reply. Ann Clin Biochem 2005; 42:162–3.Google Scholar

About the article

Corresponding author: Prof. Mauro Panteghini, Laboratorio Analisi Chimico-Cliniche, Ospedale Luigi Sacco, Via GB Grassi, 20157 Milano, Italy Phone: +39-02-39042806, Fax: +39-02-50319835,


Published Online: 2011-09-21

Published in Print: 2006-10-01


Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/CCLM.2006.234.

Export Citation

©2006 by Walter de Gruyter Berlin New York. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Michael A Jones, Larry K Golightly, and Nancy M Stolpman
Annals of Pharmacotherapy, 2011, Volume 45, Number 6, Page 748
[2]
Iefke Drion, Christa Cobbaert, Klaas H Groenier, Cas Weykamp, Henk JG Bilo, Jack FM Wetzels, and Nanne Kleefstra
BMC Nephrology, 2012, Volume 13, Number 1
[3]
Gary L. Myers
Scandinavian Journal of Clinical and Laboratory Investigation, 2008, Volume 68, Number sup241, Page 57
[4]
Mauro Panteghini
Scandinavian Journal of Clinical and Laboratory Investigation, 2008, Volume 68, Number sup241, Page 84
[5]
Sara Pasqualetti, Ilenia Infusino, Assunta Carnevale, Dominika Szőke, and Mauro Panteghini
Clinica Chimica Acta, 2015, Volume 450, Page 125
[6]
Fernando J. Hermida, María J. Lorenzo, Aida Pérez, María Fernández, Olatz Sagastagoia, and Concepción Magadán
Scandinavian Journal of Clinical and Laboratory Investigation, 2014, Volume 74, Number 7, Page 629
[7]
Pierre Delanaye, Etienne Cavalier, Jean-Paul Cristol, and Joris R. Delanghe
Journal of Nephrology, 2014, Volume 27, Number 5, Page 467
[8]
Anna Carobene, Ferruccio Ceriotti, Ilenia Infusino, Erika Frusciante, and Mauro Panteghini
Clinica Chimica Acta, 2014, Volume 427, Page 100
[9]
Edmund J. Lamb and W. Greg Miller
American Journal of Kidney Diseases, 2012, Volume 60, Number 5, Page 719
[10]
Niklas Mattsson, Ingrid Zegers, Ulf Andreasson, Maria Bjerke, Marinus A Blankenstein, Robert Bowser, Maria C Carrillo, Johan Gobom, Theresa Heath, Rand Jenkins, Andreas Jeromin, June Kaplow, Daniel Kidd, Omar F Laterza, Andrew Lockhart, Michael P Lunn, Robert L Martone, Kevin Mills, Josef Pannee, Marianne Ratcliffe, Leslie M Shaw, Adam J Simon, Holly Soares, Charlotte E Teunissen, Marcel M Verbeek, Robert M Umek, Hugo Vanderstichele, Henrik Zetterberg, Kaj Blennow, and Erik Portelius
Biomarkers in Medicine, 2012, Volume 6, Number 4, Page 409
[11]
Mikkel Krogh-Madsen, Brendan Bender, Morten Krogh Jensen, Ove Juul Nielsen, Lena E. Friberg, and Per Hartvig Honoré
Cancer Chemotherapy and Pharmacology, 2012, Volume 69, Number 5, Page 1155
[12]
Mauro Panteghini
Clinical Chemistry and Laboratory Medicine, 2012, Volume 50, Number 7
[13]
Mauro Panteghini
Clinical Biochemistry, 2009, Volume 42, Number 4-5, Page 236
[14]
Bedrich Friedecky, Josef Kratochvila, Marek Budina, and Antonin Jabor
Clinical Chemical Laboratory Medicine, 2007, Volume 45, Number 5
[15]
Zlata Flegar-Meštrić, Sonja Perkov, Barbara Šimonović, and Dubravka Juretić
Clinical Chemistry and Laboratory Medicine, 2010, Volume 48, Number 2
[16]
International Federation of Clinica on behalf of the IFCC Scientific Di
Clinical Chemistry and Laboratory Medicine, 2008, Volume 46, Number 4
[17]
Sophie Séronie-Vivien, François Bouissou, Sophie Dattez, Yvon Coulais, Anne-Marie Hanser, Bernadette Hym, and Etienne Chatelut
Clinical Chemical Laboratory Medicine, 2008, Volume 46, Number 2
[18]
Dirk P. Boer, Yolanda B. de Rijke, Wim C. Hop, Karlien Cransberg, and Eiske M. Dorresteijn
Pediatric Nephrology, 2010, Volume 25, Number 10, Page 2107
[19]
Claus U Niemann and Natalie J Serkova
Expert Opinion on Drug Metabolism & Toxicology, 2007, Volume 3, Number 4, Page 527

Comments (0)

Please log in or register to comment.
Log in