Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter / Tate, Jillian R.

12 Issues per year


IMPACT FACTOR 2016: 3.432

CiteScore 2016: 2.21

SCImago Journal Rank (SJR) 2015: 0.873
Source Normalized Impact per Paper (SNIP) 2015: 0.982

Online
ISSN
1437-4331
See all formats and pricing
In This Section
Volume 44, Issue 11 (Nov 2006)

Issues

Research translation: a new frontier for clinical laboratories

Mario Plebani
  • Department of Laboratory Medicine, University Hospital of Padova, and Center of Biomedical Research, Castelfranco Veneto (TV), Italy
/ Francesco M. Marincola
  • Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States of America
Published Online: 2006-11-07 | DOI: https://doi.org/10.1515/CCLM.2006.238

Abstract

Translational research and translational medicine (referred to hereafter as translational research) are interchangeable terms that underline the pressing need to translate into practical benefits for those affected by disease the extensive investments divested by the private and public sectors in biomedical research. For people more directly involved in clinical practice (physicians, clinical laboratory professionals and patients), translational research responds to the need to accelerate the capture of benefits of research, closing the gap between what we know and what we practice. This basically means the transfer of diagnostic and therapeutic advances proven effective in large, well-conducted trials (and, therefore, evidence-based) to daily medical practice. Translational research should be regarded as a two-way road: bench to bedside, and bedside to bench. In particular, to make possible a more effective translation process, a new road map should be implemented through interaction and cooperation between basic researchers, clinicians, laboratory professionals and manufacturers. Some examples of recent developments in clinical laboratory testing, including markers of cardiovascular diseases, clinical proteomics and recombinant allergens, may explain the importance of careful evaluation of all variables that allow the introduction of such new insights into clinical practice to assure better clinical outcomes. The vital role of laboratory medicine in the delivery of safer and more effective healthcare requires more careful evaluation not only of the analytical characteristics, but also of any other variable that may affect the clinical usefulness and diagnostic performances of laboratory tests, thus allowing more accurate interpretation and utilization of laboratory information.

Clin Chem Lab Med 2006;44:1303–12.

Keywords: biomarkers; clinical practice; genomics; laboratory information; proteomics; scientific knowledge; translational research

References

  • 1.

    Pober JS, Neuhauser CS, Pober JM. Obstacles facing translational research in academic medical centers. FASEB J 2001; 15:2303–13. [Crossref]

  • 2.

    Institute of Medicine. Academic Health Centers. Leading change in the 21st century. Washington, DC: The National Academies Press, 2004.

  • 3.

    Davis D, Evans M, Jadad A, Perrier L, Rath D, Ryan D, et al. The case for knowledge translation: shortening the journey from evidence to effect. Br Med J 2003; 327:33–5.

  • 4.

    O'Connor GT, Quinton HB, Traven ND, Ramunno LD, Dodds TA, Marciniak TA, et al. Geographic variation in the treatment of acute myocardial infarction: the Cooperative Cardiovascular Project. J Am Med Assoc 1999; 281:627–33.

  • 5.

    Konh LT, Corrigan JM, Donaldson MS. To err is human: building a safer health system. Washington, DC: Academic Press, 2000.

  • 6.

    Bion JF, Heffner JE. Challenges in the care of the acutely ill. Lancet 2004; 363:970–7.

  • 7.

    Leape LL, Berwick DM. Five years after To Err Is Human. J Am Med Assoc 2005; 293:2384–90.

  • 8.

    Chassin MR, Galvin RW. The urgent need to improve health care quality. J Am Med Assoc 1998; 280:1000–5.

  • 9.

    Ross JS, Ginsburg GS. The integration of molecular diagnostics with therapeutics. Am J Clin Pathol 2003; 119:26–36.

  • 10.

    Canadian Institutes of Health Research. Knowledge translation framework. www.cihr-ircs.gc.ca/cgi-bin/print-imprimer.pl. Accessed September 7, 2005.

  • 11.

    Crowley WF, Sherwood L, Salberg P, Scheinberg D, Slavkin H, Tilson H, et al. Clinical research in the United States at a crossroads. J Am Med Assoc 2004; 291:1120–6.

  • 12.

    Price CP. Evidence-based laboratory medicine: supporting decision-making. Clin Chem 2000; 46:1041–50.

  • 13.

    Mankoff SP, Brander C, Ferrone S, Marincola FM. Lost in translation: obstacles to translational medicine. J Transl Med 2004; 2:14–8. [Crossref]

  • 14.

    Peters K. Exceptional matters. Lancet 2004; 364:2142–51. [Crossref]

  • 15.

    Pickles H. Using lessons from the past to plan for pandemic flu. Br Med J 2006; 332:783–6.

  • 16.

    Andrei A, Zervos MJ. The application of molecular techniques to the study of hospital infection. Arch Pathol Lab Med 2006; 130:662–8.

  • 17.

    Muller MP, Richardson SE, McGeer A, Dresser L, Raboud J, Mazzulli T, et al. Early diagnosis of SARS: lessons from the Toronto SARS outbreak. Eur J Clin Microbiol Infect Dis 2006; 25:230–7. [Crossref]

  • 18.

    Partridge WM. Translational science: what is it and why is it so important? Drug Discovery Today 2003; 8:813–5. [Crossref]

  • 19.

    Marincola FM. Translational medicine: a two-way road. J Transl Med 2003; 1:1–2. [Crossref]

  • 20.

    Plebani M. Proteomics: the next revolution in laboratory medicine? Clin Chim Acta 2005; 357:113–22.

  • 21.

    Lenfant C. Clinical research to clinical practice – lost in translation? N Engl J Med 2003; 349:868–74.

  • 22.

    Hansson GK. Inflammation, atherosclerosis and coronary artery disease. N Engl J Med 2005; 352:1685–95.

  • 23.

    Rosalki SB, Roberts R, Katus HA, Giannitis E, Ladenson JH, Apple FS. Cardiac biomarkers for detection of myocardial infarction: perspectives from past to present. Clin Chem 2004; 50:2205–13. [Crossref]

  • 24.

    Clerico A. The increasing impact of laboratory medicine on clinical cardiology. Clin Chem Lab Med 2003; 41:871–83. [Crossref]

  • 25.

    Alpert JS, Thygesen K, Antman E, Bassand JP. Myocardial infarction redefined – a consensus document of the Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol 2000; 36:959–69. [Crossref]

  • 26.

    Apple FS, Wu AH, Mair J, Ravkilde J, Panteghini M, Tate J, et al. Future biomarkers for the detection of ischemia and risk stratification in acute coronary syndrome. Clin Chem 2005; 51:810–24. [Crossref]

  • 27.

    Manolio T. Novel risk markers and clinical practice. N Engl J Med 2003; 349:1587–9.

  • 28.

    Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwing LM, et al. The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. Clin Chem 2003; 49:7–18. [Crossref]

  • 29.

    Galvani M, Ottani F, Oltrona L, Ardissino D, Gensini GF, Maggioni AP, et al. N-Terminal pro-brain natriuretic peptide on admission has prognostic value across the whole spectrum of acute coronary syndromes. Circulation 2004; 110:128–34.

  • 30.

    Ridker PM. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation 2003; 107:363–9. [Crossref]

  • 31.

    Morrow DA, Braunwald E. Future of biomarkers in acute coronary syndromes: moving toward a multimarker strategy. Circulation 2003; 108:250–2. [Crossref]

  • 32.

    Jaffe AS, Babuin L, Apple FS. Biomarkers in acute cardiac disease. J Am Coll Cardiol 2006; 48:1–11. [Crossref]

  • 33.

    Moons KG, Biesheuvel CJ, Grobbee DE. Test research versus diagnostic research. Clin Chem 2004; 50:473–4. [Crossref]

  • 34.

    Heim SW, Schectman JM, Siadaty MS, Philbrick JT. D-Dimer testing for deep venous thrombosis: a meta-analysis. Clin Chem 2004; 50:1136–47. [Crossref]

  • 35.

    Stein PD, Hull RD, Patel KC, Olson RE, Ghall WA, Brant R, et al. D-Dimer for the exclusion of acute venous thrombosis and pulmonary embolism. Ann Int Med 2004; 140:589–602.

  • 36.

    McDermott MM, Ferrucci L, Liu K, Criqui MH, Greenland P, Green D, et al. D-Dimer and inflammatory markers as predictors of functional decline in men and women with and without peripheral arterial disease. J Am Geriatr Soc 2005; 53:1688–96. [Crossref]

  • 37.

    Plebani M, Zaninotto M. Diagnostic strategies using myoglobin measurement in myocardial infarction. Clin Chim Acta 1998; 272:69–77.

  • 38.

    Tapson VF, Carroll BA, Davidson BL, Elliott CG, Fedullo PF, Hales CA, et al. The diagnostic approach to acute venous thromboembolism: clinical practice guideline: American Thoracic Society. Am J Respir Crit Care Med 1999; 160:1043–66.

  • 39.

    Kyrle PA, Eichinger S. Deep vein thrombosis. Lancet 2005; 365:1163–74.

  • 40.

    Plebani M. The future of clinical laboratories: more testing or knowledge services? Clin Chem Lab Med 2005; 43:893–6. [Crossref]

  • 41.

    American Diabetes Association. Diabetic nephropathy. Diabetes Care 2003;26(Suppl 1):S94–8.

  • 42.

    Mogensen CE. Microalbuminuria and hypertension with focus on type 1 and type 2 diabetes. J Intern Med 2003; 254:45–66.

  • 43.

    Toto RD. Microalbuminuria: definition, detection, and clinical significance. J Clin Hypertens 2004; 6(Suppl 3):2–7. [Crossref]

  • 44.

    Viberti GC, Keen H. Microalbuminuria and diabetes. Lancet 1983; 12:352–3. [Crossref]

  • 45.

    Busby DE, Bakris GL. Comparison of commonly used assays for the detection of microalbuminuria. J Clin Hypertens 2004; 6(Suppl 3):8–12.

  • 46.

    Osicka TM, Houlihan CA, Chan JC, Jerums G, Comper WD. Albuminuria in patients with type 1 diabetes is directly linked to changes in the lysosome-mediated degradation of albumin during renal passage. Diabetes 2000; 49:1579–84.

  • 47.

    Greive KA, Balazs ND, Comper WD. Protein fragments in urine have been considerably underestimated by various protein assays. Clin Chem 2001; 47:1717–9.

  • 48.

    Comper WD, Osicka TM, Jerums G. High prevalence of immuno-unreactive intact albumin in urine of diabetic patients. Am J Kidney Dis 2003; 41:336–42. [Crossref]

  • 49.

    Peters T. New forms of urinary albumin in early diabetes. Clin Chem 2004; 50:2238–9. [Crossref]

  • 50.

    Wilkins MR, Williams KL, Appel RD, Hochstrasser DF, editors. Proteome research: new frontiers in functional genomics. Berlin: Springer, 1997:243 pp.

  • 51.

    Wilkins MR, Sanchez JC, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 1996; 13:19–50. [Crossref]

  • 52.

    Petricoin EF III, Ardekani AM, Hitt BA, Levine P, Fusaro VA, Steinberg S, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 2002; 359:572–7.

  • 53.

    Petricoin EF III, Omstein DK, Paweletz CP, Ardekani AM, Hackett PS, Hitt BA. Serum proteomic patterns for detection of prostatic cancer. J Natl Cancer Inst 2002; 94:1576–8. [Crossref]

  • 54.

    Adam BL, Qu Y, Davies JW, Ward MD, Clements MA, Cazares LH, et al. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res 2002; 62:3609–14.

  • 55.

    Diamandis EP. Proteomic patterns in biological fluids: do they represent the future of cancer diagnostics? Clin Chem 2003; 49:1272–8. [Crossref]

  • 56.

    Hortin GL. Can mass spectrometric protein profiling meet desired standards of clinical laboratory practice? Clin Chem 2005; 51:3–5. [Crossref]

  • 57.

    White CN, Chan DW, Zhang Z. Bioinformatics strategies for cancer biomarker discovery. Clin Biochem 2004; 37:636–41. [Crossref]

  • 58.

    Petricoin EF III, Liotta LA. The vision for a new diagnostic paradigm. Clin Chem 2003; 49:1276–8. [Crossref]

  • 59.

    Hortin GL. The MALDI TOF mass spectrometric view of the plasma proteome and peptidome. Clin Chem 2006; 52:1223–37. [Crossref]

  • 60.

    Hortin GL, Jortani SA, Ritchie JC, Valdes R, Chan DW. Proteomics: a new diagnostic frontier. Clin Chem 2006; 52:1218–22. [Crossref]

  • 61.

    Sly RM. Changing prevalence of allergic rhinitis and asthma. Ann Allergy Asthma Immunol 1999; 82:233–48. [Crossref]

  • 62.

    Johansson SG, Bennich H. Immunological studies of an atypical (myeloma) immunoglobulin. Immunology 1967; 13:381–94.

  • 63.

    Ishizaka K, Ishizaka T. Identification of γE-antibodies as a carrier of reaginic activity. J Immunol 1967; 99:1187–98.

  • 64.

    Wide L, Bennich H, Johansson SG. Diagnosis of allergy by an in vitro test for allergen antibodies. Lancet 1967; 2:1105–7. [Crossref]

  • 65.

    Plebani M. Clinical value and measurement of specific IgE. Clin Biochem 2003; 36:453–69. [Crossref]

  • 66.

    Van der Veen MJ, Mulder M, Witteman AM, van Ree R, Aalberse RC, Janse HM, et al. False-positive skin prick test responses to commercially available dog dander extracts caused by contamination with house dust mite allergens. J Allergy Clin Immunol 1996; 98:1028–32.

  • 67.

    Valenta R, Kraft D. Recombinant allergens for diagnosis and therapy of allergic diseases. Curr Opin Immunol 1995; 7:751–6. [Crossref]

  • 68.

    Valenta R, Duchene M, Vrtala S, Birkner T, Ebner C, Hirschwehr R, et al. Recombinant allergens for immunoblot diagnosis of tree-pollen allergy. J Allergy Clin Immunol 1991; 88:889–94. [Crossref]

  • 69.

    Mari A. Multiple pollen sensitization: a molecular approach to the diagnosis. Int Arch Allergy Immunol 2001; 125:57–65. [Crossref]

  • 70.

    Mothes N, Valenta R, Spitzauer S. Allergy testing: the role of recombinant allergens. Clin Chem Lab Med 2006; 44:125–32.

  • 71.

    Valenta R, Lidholm J, Niederberger V, Hayek B, Kraft D, Gronlund H. The recombinant allergen-based concept of component-resolved diagnostics and immunotherapy (CRD and CRIT). Clin Exp Allergy 1999; 29:896–904. [Crossref]

  • 72.

    Deinhofer K, Sevcik H, Balic N, Harwanegg C, Hiller R, Rumpold H. Microarrayed allergens for IgE profiling. Methods 2004; 32:249–54. [Crossref]

  • 73.

    Harwanegg C, Hiller R. Protein microarray for the diagnosis of allergic diseases: state-of-the-art and future development. Clin Chem Lab Med 2005; 43:1321–6.

  • 74.

    Kattan MW. Judging new makers by their ability to improve predictive accuracy. J Natl Cancer Inst 1989; 81:1879–86.

  • 75.

    Baker SG, Kramer BS, Srivastava S. Markers for early detection of cancer: statistical guidelines for nested case-control studies. BMC Med Res Methodol 2002; 2:4.

  • 76.

    Pepe MS, James H, Longton G, Leisenring W, Newcomb P. Limitations of the odds ratio in gauging the performance of diagnostic, prognostic, or screening marker. Am J Epidemiol 2004; 159:882–90.

  • 77.

    Pepe MS, Longton G. Standardizing diagnostic markers to evaluate and compare their performance. Epidemiology 2005; 16:598–603. [Crossref]

  • 78.

    Pfeiffer RM, Castle PE. With or without a gold standard. Epidemiology 2005; 16:595–7. [Crossref]

  • 79.

    Rosenberg RN. Translating biomedical research to the bedside: a national crisis and a call to action. J Am Med Assoc 2003;289:1305–6.

  • 80.

    Snyderman R. The clinical researcher – an “emerging” species. J Am Med Assoc 2004; 291:882–3.

  • 81.

    Horig H, Marincola E, Marincola FM. Obstacles and opportunities in translational research. Nat Med 2005; 11:705–8. [Crossref]

  • 82.

    Zerhouni EA. Translational and clinical science – time for a new vision. N Engl J Med 2005; 353:1621–3.

  • 83.

    Plebani M, Laposata M. Translational research involving new biomarkers of disease: a leading role for the pathologist. Am J Clin Pathol 2006; 126:169–71. [Crossref]

About the article

Corresponding author: Mario Plebani, Department of Laboratory Medicine, University Hospital of Padova, Via Giustiniani, 2, 35128 Padova, Italy Phone: +39-049-8212780/92, Fax: +39-049-663240,


Received: 2006-06-10

Accepted: 2006-07-12

Published Online: 2006-11-07

Published in Print: 2006-11-01



Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/CCLM.2006.238. Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
D. Borsook and E. Kalso
European Journal of Pain, 2013, Volume 17, Number 8, Page 1109
[2]
H.C. Korting, C. Schöllmann, M. Stauss-Grabo, and M. Schäfer-Korting
Skin Pharmacology and Physiology, 2012, Volume 25, Number 6, Page 323
[4]
Mario Plebani and Giuseppe Lippi
Clinical Biochemistry, 2010, Volume 43, Number 12, Page 939
[5]
Mario Plebani, Marina Pittoni, Marilena Celadin, Daniela Bernardi, and Monica Maria Mion
Autoimmunity Reviews, 2009, Volume 8, Number 3, Page 238
[7]
Mario Plebani
Clinica Chimica Acta, 2009, Volume 404, Number 1, Page 46
[8]
Clinical Chemistry and Laboratory Medicine, 2011, Volume 49, Number s1
[9]
Romolo M. Dorizzi
Clinical Chemical Laboratory Medicine, 2007, Volume 45, Number 4

Comments (0)

Please log in or register to comment.
Log in