Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter / Tate, Jillian R.

12 Issues per year

IMPACT FACTOR 2016: 3.432

CiteScore 2016: 2.21

SCImago Journal Rank (SJR) 2016: 1.000
Source Normalized Impact per Paper (SNIP) 2016: 1.112

See all formats and pricing
More options …
Volume 44, Issue 11 (Nov 2006)


Research translation: a new frontier for clinical laboratories

Mario Plebani
  • Department of Laboratory Medicine, University Hospital of Padova, and Center of Biomedical Research, Castelfranco Veneto (TV), Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Francesco M. Marincola
  • Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2006-11-07 | DOI: https://doi.org/10.1515/CCLM.2006.238


Translational research and translational medicine (referred to hereafter as translational research) are interchangeable terms that underline the pressing need to translate into practical benefits for those affected by disease the extensive investments divested by the private and public sectors in biomedical research. For people more directly involved in clinical practice (physicians, clinical laboratory professionals and patients), translational research responds to the need to accelerate the capture of benefits of research, closing the gap between what we know and what we practice. This basically means the transfer of diagnostic and therapeutic advances proven effective in large, well-conducted trials (and, therefore, evidence-based) to daily medical practice. Translational research should be regarded as a two-way road: bench to bedside, and bedside to bench. In particular, to make possible a more effective translation process, a new road map should be implemented through interaction and cooperation between basic researchers, clinicians, laboratory professionals and manufacturers. Some examples of recent developments in clinical laboratory testing, including markers of cardiovascular diseases, clinical proteomics and recombinant allergens, may explain the importance of careful evaluation of all variables that allow the introduction of such new insights into clinical practice to assure better clinical outcomes. The vital role of laboratory medicine in the delivery of safer and more effective healthcare requires more careful evaluation not only of the analytical characteristics, but also of any other variable that may affect the clinical usefulness and diagnostic performances of laboratory tests, thus allowing more accurate interpretation and utilization of laboratory information.

Clin Chem Lab Med 2006;44:1303–12.

Keywords: biomarkers; clinical practice; genomics; laboratory information; proteomics; scientific knowledge; translational research


  • 1.

    Pober JS, Neuhauser CS, Pober JM. Obstacles facing translational research in academic medical centers. FASEB J 2001; 15:2303–13.CrossrefGoogle Scholar

  • 2.

    Institute of Medicine. Academic Health Centers. Leading change in the 21st century. Washington, DC: The National Academies Press, 2004.Google Scholar

  • 3.

    Davis D, Evans M, Jadad A, Perrier L, Rath D, Ryan D, et al. The case for knowledge translation: shortening the journey from evidence to effect. Br Med J 2003; 327:33–5.Google Scholar

  • 4.

    O'Connor GT, Quinton HB, Traven ND, Ramunno LD, Dodds TA, Marciniak TA, et al. Geographic variation in the treatment of acute myocardial infarction: the Cooperative Cardiovascular Project. J Am Med Assoc 1999; 281:627–33.Google Scholar

  • 5.

    Konh LT, Corrigan JM, Donaldson MS. To err is human: building a safer health system. Washington, DC: Academic Press, 2000.Google Scholar

  • 6.

    Bion JF, Heffner JE. Challenges in the care of the acutely ill. Lancet 2004; 363:970–7.Google Scholar

  • 7.

    Leape LL, Berwick DM. Five years after To Err Is Human. J Am Med Assoc 2005; 293:2384–90.Google Scholar

  • 8.

    Chassin MR, Galvin RW. The urgent need to improve health care quality. J Am Med Assoc 1998; 280:1000–5.Google Scholar

  • 9.

    Ross JS, Ginsburg GS. The integration of molecular diagnostics with therapeutics. Am J Clin Pathol 2003; 119:26–36.Google Scholar

  • 10.

    Canadian Institutes of Health Research. Knowledge translation framework. www.cihr-ircs.gc.ca/cgi-bin/print-imprimer.pl. Accessed September 7, 2005.Google Scholar

  • 11.

    Crowley WF, Sherwood L, Salberg P, Scheinberg D, Slavkin H, Tilson H, et al. Clinical research in the United States at a crossroads. J Am Med Assoc 2004; 291:1120–6.Google Scholar

  • 12.

    Price CP. Evidence-based laboratory medicine: supporting decision-making. Clin Chem 2000; 46:1041–50.Google Scholar

  • 13.

    Mankoff SP, Brander C, Ferrone S, Marincola FM. Lost in translation: obstacles to translational medicine. J Transl Med 2004; 2:14–8.CrossrefGoogle Scholar

  • 14.

    Peters K. Exceptional matters. Lancet 2004; 364:2142–51.CrossrefGoogle Scholar

  • 15.

    Pickles H. Using lessons from the past to plan for pandemic flu. Br Med J 2006; 332:783–6.Google Scholar

  • 16.

    Andrei A, Zervos MJ. The application of molecular techniques to the study of hospital infection. Arch Pathol Lab Med 2006; 130:662–8.Google Scholar

  • 17.

    Muller MP, Richardson SE, McGeer A, Dresser L, Raboud J, Mazzulli T, et al. Early diagnosis of SARS: lessons from the Toronto SARS outbreak. Eur J Clin Microbiol Infect Dis 2006; 25:230–7.CrossrefGoogle Scholar

  • 18.

    Partridge WM. Translational science: what is it and why is it so important? Drug Discovery Today 2003; 8:813–5.CrossrefGoogle Scholar

  • 19.

    Marincola FM. Translational medicine: a two-way road. J Transl Med 2003; 1:1–2.CrossrefGoogle Scholar

  • 20.

    Plebani M. Proteomics: the next revolution in laboratory medicine? Clin Chim Acta 2005; 357:113–22.Google Scholar

  • 21.

    Lenfant C. Clinical research to clinical practice – lost in translation? N Engl J Med 2003; 349:868–74.Google Scholar

  • 22.

    Hansson GK. Inflammation, atherosclerosis and coronary artery disease. N Engl J Med 2005; 352:1685–95.Google Scholar

  • 23.

    Rosalki SB, Roberts R, Katus HA, Giannitis E, Ladenson JH, Apple FS. Cardiac biomarkers for detection of myocardial infarction: perspectives from past to present. Clin Chem 2004; 50:2205–13.CrossrefGoogle Scholar

  • 24.

    Clerico A. The increasing impact of laboratory medicine on clinical cardiology. Clin Chem Lab Med 2003; 41:871–83.CrossrefGoogle Scholar

  • 25.

    Alpert JS, Thygesen K, Antman E, Bassand JP. Myocardial infarction redefined – a consensus document of the Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol 2000; 36:959–69.CrossrefGoogle Scholar

  • 26.

    Apple FS, Wu AH, Mair J, Ravkilde J, Panteghini M, Tate J, et al. Future biomarkers for the detection of ischemia and risk stratification in acute coronary syndrome. Clin Chem 2005; 51:810–24.CrossrefGoogle Scholar

  • 27.

    Manolio T. Novel risk markers and clinical practice. N Engl J Med 2003; 349:1587–9.Google Scholar

  • 28.

    Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwing LM, et al. The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. Clin Chem 2003; 49:7–18.CrossrefGoogle Scholar

  • 29.

    Galvani M, Ottani F, Oltrona L, Ardissino D, Gensini GF, Maggioni AP, et al. N-Terminal pro-brain natriuretic peptide on admission has prognostic value across the whole spectrum of acute coronary syndromes. Circulation 2004; 110:128–34.Google Scholar

  • 30.

    Ridker PM. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation 2003; 107:363–9.CrossrefGoogle Scholar

  • 31.

    Morrow DA, Braunwald E. Future of biomarkers in acute coronary syndromes: moving toward a multimarker strategy. Circulation 2003; 108:250–2.CrossrefGoogle Scholar

  • 32.

    Jaffe AS, Babuin L, Apple FS. Biomarkers in acute cardiac disease. J Am Coll Cardiol 2006; 48:1–11.CrossrefGoogle Scholar

  • 33.

    Moons KG, Biesheuvel CJ, Grobbee DE. Test research versus diagnostic research. Clin Chem 2004; 50:473–4.CrossrefGoogle Scholar

  • 34.

    Heim SW, Schectman JM, Siadaty MS, Philbrick JT. D-Dimer testing for deep venous thrombosis: a meta-analysis. Clin Chem 2004; 50:1136–47.CrossrefGoogle Scholar

  • 35.

    Stein PD, Hull RD, Patel KC, Olson RE, Ghall WA, Brant R, et al. D-Dimer for the exclusion of acute venous thrombosis and pulmonary embolism. Ann Int Med 2004; 140:589–602.Google Scholar

  • 36.

    McDermott MM, Ferrucci L, Liu K, Criqui MH, Greenland P, Green D, et al. D-Dimer and inflammatory markers as predictors of functional decline in men and women with and without peripheral arterial disease. J Am Geriatr Soc 2005; 53:1688–96.CrossrefGoogle Scholar

  • 37.

    Plebani M, Zaninotto M. Diagnostic strategies using myoglobin measurement in myocardial infarction. Clin Chim Acta 1998; 272:69–77.Google Scholar

  • 38.

    Tapson VF, Carroll BA, Davidson BL, Elliott CG, Fedullo PF, Hales CA, et al. The diagnostic approach to acute venous thromboembolism: clinical practice guideline: American Thoracic Society. Am J Respir Crit Care Med 1999; 160:1043–66.Google Scholar

  • 39.

    Kyrle PA, Eichinger S. Deep vein thrombosis. Lancet 2005; 365:1163–74.Google Scholar

  • 40.

    Plebani M. The future of clinical laboratories: more testing or knowledge services? Clin Chem Lab Med 2005; 43:893–6.CrossrefGoogle Scholar

  • 41.

    American Diabetes Association. Diabetic nephropathy. Diabetes Care 2003;26(Suppl 1):S94–8.Google Scholar

  • 42.

    Mogensen CE. Microalbuminuria and hypertension with focus on type 1 and type 2 diabetes. J Intern Med 2003; 254:45–66.Google Scholar

  • 43.

    Toto RD. Microalbuminuria: definition, detection, and clinical significance. J Clin Hypertens 2004; 6(Suppl 3):2–7.CrossrefGoogle Scholar

  • 44.

    Viberti GC, Keen H. Microalbuminuria and diabetes. Lancet 1983; 12:352–3.CrossrefGoogle Scholar

  • 45.

    Busby DE, Bakris GL. Comparison of commonly used assays for the detection of microalbuminuria. J Clin Hypertens 2004; 6(Suppl 3):8–12.Google Scholar

  • 46.

    Osicka TM, Houlihan CA, Chan JC, Jerums G, Comper WD. Albuminuria in patients with type 1 diabetes is directly linked to changes in the lysosome-mediated degradation of albumin during renal passage. Diabetes 2000; 49:1579–84.Google Scholar

  • 47.

    Greive KA, Balazs ND, Comper WD. Protein fragments in urine have been considerably underestimated by various protein assays. Clin Chem 2001; 47:1717–9.Google Scholar

  • 48.

    Comper WD, Osicka TM, Jerums G. High prevalence of immuno-unreactive intact albumin in urine of diabetic patients. Am J Kidney Dis 2003; 41:336–42.CrossrefGoogle Scholar

  • 49.

    Peters T. New forms of urinary albumin in early diabetes. Clin Chem 2004; 50:2238–9.CrossrefGoogle Scholar

  • 50.

    Wilkins MR, Williams KL, Appel RD, Hochstrasser DF, editors. Proteome research: new frontiers in functional genomics. Berlin: Springer, 1997:243 pp.Google Scholar

  • 51.

    Wilkins MR, Sanchez JC, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 1996; 13:19–50.CrossrefGoogle Scholar

  • 52.

    Petricoin EF III, Ardekani AM, Hitt BA, Levine P, Fusaro VA, Steinberg S, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 2002; 359:572–7.Google Scholar

  • 53.

    Petricoin EF III, Omstein DK, Paweletz CP, Ardekani AM, Hackett PS, Hitt BA. Serum proteomic patterns for detection of prostatic cancer. J Natl Cancer Inst 2002; 94:1576–8.CrossrefGoogle Scholar

  • 54.

    Adam BL, Qu Y, Davies JW, Ward MD, Clements MA, Cazares LH, et al. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res 2002; 62:3609–14.Google Scholar

  • 55.

    Diamandis EP. Proteomic patterns in biological fluids: do they represent the future of cancer diagnostics? Clin Chem 2003; 49:1272–8.CrossrefGoogle Scholar

  • 56.

    Hortin GL. Can mass spectrometric protein profiling meet desired standards of clinical laboratory practice? Clin Chem 2005; 51:3–5.CrossrefGoogle Scholar

  • 57.

    White CN, Chan DW, Zhang Z. Bioinformatics strategies for cancer biomarker discovery. Clin Biochem 2004; 37:636–41.CrossrefGoogle Scholar

  • 58.

    Petricoin EF III, Liotta LA. The vision for a new diagnostic paradigm. Clin Chem 2003; 49:1276–8.CrossrefGoogle Scholar

  • 59.

    Hortin GL. The MALDI TOF mass spectrometric view of the plasma proteome and peptidome. Clin Chem 2006; 52:1223–37.CrossrefGoogle Scholar

  • 60.

    Hortin GL, Jortani SA, Ritchie JC, Valdes R, Chan DW. Proteomics: a new diagnostic frontier. Clin Chem 2006; 52:1218–22.CrossrefGoogle Scholar

  • 61.

    Sly RM. Changing prevalence of allergic rhinitis and asthma. Ann Allergy Asthma Immunol 1999; 82:233–48.CrossrefGoogle Scholar

  • 62.

    Johansson SG, Bennich H. Immunological studies of an atypical (myeloma) immunoglobulin. Immunology 1967; 13:381–94.Google Scholar

  • 63.

    Ishizaka K, Ishizaka T. Identification of γE-antibodies as a carrier of reaginic activity. J Immunol 1967; 99:1187–98.Google Scholar

  • 64.

    Wide L, Bennich H, Johansson SG. Diagnosis of allergy by an in vitro test for allergen antibodies. Lancet 1967; 2:1105–7.CrossrefGoogle Scholar

  • 65.

    Plebani M. Clinical value and measurement of specific IgE. Clin Biochem 2003; 36:453–69.CrossrefGoogle Scholar

  • 66.

    Van der Veen MJ, Mulder M, Witteman AM, van Ree R, Aalberse RC, Janse HM, et al. False-positive skin prick test responses to commercially available dog dander extracts caused by contamination with house dust mite allergens. J Allergy Clin Immunol 1996; 98:1028–32.Google Scholar

  • 67.

    Valenta R, Kraft D. Recombinant allergens for diagnosis and therapy of allergic diseases. Curr Opin Immunol 1995; 7:751–6.CrossrefGoogle Scholar

  • 68.

    Valenta R, Duchene M, Vrtala S, Birkner T, Ebner C, Hirschwehr R, et al. Recombinant allergens for immunoblot diagnosis of tree-pollen allergy. J Allergy Clin Immunol 1991; 88:889–94.CrossrefGoogle Scholar

  • 69.

    Mari A. Multiple pollen sensitization: a molecular approach to the diagnosis. Int Arch Allergy Immunol 2001; 125:57–65.CrossrefGoogle Scholar

  • 70.

    Mothes N, Valenta R, Spitzauer S. Allergy testing: the role of recombinant allergens. Clin Chem Lab Med 2006; 44:125–32.Google Scholar

  • 71.

    Valenta R, Lidholm J, Niederberger V, Hayek B, Kraft D, Gronlund H. The recombinant allergen-based concept of component-resolved diagnostics and immunotherapy (CRD and CRIT). Clin Exp Allergy 1999; 29:896–904.CrossrefGoogle Scholar

  • 72.

    Deinhofer K, Sevcik H, Balic N, Harwanegg C, Hiller R, Rumpold H. Microarrayed allergens for IgE profiling. Methods 2004; 32:249–54.CrossrefGoogle Scholar

  • 73.

    Harwanegg C, Hiller R. Protein microarray for the diagnosis of allergic diseases: state-of-the-art and future development. Clin Chem Lab Med 2005; 43:1321–6.Google Scholar

  • 74.

    Kattan MW. Judging new makers by their ability to improve predictive accuracy. J Natl Cancer Inst 1989; 81:1879–86.Google Scholar

  • 75.

    Baker SG, Kramer BS, Srivastava S. Markers for early detection of cancer: statistical guidelines for nested case-control studies. BMC Med Res Methodol 2002; 2:4.Google Scholar

  • 76.

    Pepe MS, James H, Longton G, Leisenring W, Newcomb P. Limitations of the odds ratio in gauging the performance of diagnostic, prognostic, or screening marker. Am J Epidemiol 2004; 159:882–90.Google Scholar

  • 77.

    Pepe MS, Longton G. Standardizing diagnostic markers to evaluate and compare their performance. Epidemiology 2005; 16:598–603.CrossrefGoogle Scholar

  • 78.

    Pfeiffer RM, Castle PE. With or without a gold standard. Epidemiology 2005; 16:595–7.CrossrefGoogle Scholar

  • 79.

    Rosenberg RN. Translating biomedical research to the bedside: a national crisis and a call to action. J Am Med Assoc 2003;289:1305–6.Google Scholar

  • 80.

    Snyderman R. The clinical researcher – an “emerging” species. J Am Med Assoc 2004; 291:882–3.Google Scholar

  • 81.

    Horig H, Marincola E, Marincola FM. Obstacles and opportunities in translational research. Nat Med 2005; 11:705–8.CrossrefGoogle Scholar

  • 82.

    Zerhouni EA. Translational and clinical science – time for a new vision. N Engl J Med 2005; 353:1621–3.Google Scholar

  • 83.

    Plebani M, Laposata M. Translational research involving new biomarkers of disease: a leading role for the pathologist. Am J Clin Pathol 2006; 126:169–71.CrossrefGoogle Scholar

About the article

Corresponding author: Mario Plebani, Department of Laboratory Medicine, University Hospital of Padova, Via Giustiniani, 2, 35128 Padova, Italy Phone: +39-049-8212780/92, Fax: +39-049-663240,

Received: 2006-06-10

Accepted: 2006-07-12

Published Online: 2006-11-07

Published in Print: 2006-11-01

Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/CCLM.2006.238.

Export Citation

©2006 by Walter de Gruyter Berlin New York. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Mario Plebani
Clinical Chemistry and Laboratory Medicine (CCLM), 2017, Volume 55, Number 8
Wolf H Rogowski, Susanne C Hartz, and Jürgen H John
BMC Health Services Research, 2008, Volume 8, Number 1
D. Borsook and E. Kalso
European Journal of Pain, 2013, Volume 17, Number 8, Page 1109
H.C. Korting, C. Schöllmann, M. Stauss-Grabo, and M. Schäfer-Korting
Skin Pharmacology and Physiology, 2012, Volume 25, Number 6, Page 323
Mario Plebani and Giuseppe Lippi
Clinical Biochemistry, 2010, Volume 43, Number 12, Page 939
Mario Plebani, Marina Pittoni, Marilena Celadin, Daniela Bernardi, and Monica Maria Mion
Autoimmunity Reviews, 2009, Volume 8, Number 3, Page 238
Gian Cesare Guidi, Giuseppe Lippi, and Mario Plebani
Clinica Chimica Acta, 2008, Volume 393, Number 1, Page 51
Mario Plebani
Clinica Chimica Acta, 2009, Volume 404, Number 1, Page 46
Mario Plebani and Daniela Basso
Clinica Chimica Acta, 2007, Volume 381, Number 1, Page 39
Clinical Chemistry and Laboratory Medicine, 2011, Volume 49, Number s1
Mario Plebani
Clinical Chemistry and Laboratory Medicine, 2010, Volume 48, Number 7
Romolo M. Dorizzi
Clinical Chemical Laboratory Medicine, 2007, Volume 45, Number 4
Mario Plebani
Clinical Chemistry and Laboratory Medicine, 2010, Volume 48, Number 7
Michel R. Langlois and Pierre Wallemacq
Clinical Chemistry and Laboratory Medicine, 2009, Volume 47, Number 10
Giuseppe Lippi, Massimo Franchini, and Emmanuel J. Favaloro
Clinical Chemistry and Laboratory Medicine, 2009, Volume 47, Number 5
Mario Plebani and Giuseppe Lippi
Clinical Chemistry and Laboratory Medicine, 2009, Volume 47, Number 8
Giuseppe Lippi and Mario Plebani
Clinical Chemistry and Laboratory Medicine, 2010, Volume 48, Number 6

Comments (0)

Please log in or register to comment.
Log in