Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter / Tate, Jillian R.

12 Issues per year

IMPACT FACTOR 2016: 3.432

CiteScore 2016: 2.21

SCImago Journal Rank (SJR) 2016: 1.000
Source Normalized Impact per Paper (SNIP) 2016: 1.112

See all formats and pricing
More options …
Volume 44, Issue 11 (Nov 2006)


Increased homocysteine in heart failure: a result of renal impairment?

Nur Aksoy
  • Department of Medical Laboratory, Vocational School of Higher Education for Health Services, University of Gaziantep, Gaziantep, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mehmet Aksoy / Mahmut Cakmak
  • Department of Cardiology, Siyami Ersek Thoracic and Cardiovascular Surgery Center, Istanbul, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hasan Serdar Gergerlioglu / Vedat Davutoglu / Serdar Soydinc / Iclal Meram
Published Online: 2006-11-07 | DOI: https://doi.org/10.1515/CCLM.2006.245


Background: Hyperhomocysteinemia may constitute a risk factor for patients with severe heart failure. This study examines the relationship between plasma homocysteine concentration and left ventricular ejection fraction with renal function in heart failure patients free of coronary artery disease.

Methods: Left ventricular ejection fraction was documented in 62 patients with advanced heart failure who had no proven significant coronary artery stenosis. Glomerular filtration rate was measured using the Cockroft-Gault equation.

Results: Elevated homocysteine levels (≥15μmol/L) were detected in 22 patients. Low glomerular filtration rate was observed in patients who had normal serum creatinine concentration. Homocysteine was strongly correlated with age, duration of disease, left ventricular ejection fraction, serum creatinine, and glomerular filtration rate. Statistically significant trends were observed across respective homocysteine quartiles. However, by multivariate regression, the strongest predictor of homocysteine was the glomerular filtration rate.

Conclusions: Impaired renal function leads to a diminished clearance rate, which can be a prominent pathophysiological mechanism in the elevation of homocysteine concentration in heart failure.

Clin Chem Lab Med 2006;44:1324–9.

Keywords: heart failure; hyperhomocysteinemia; renal function


  • 1.

    Bostom AG, Selhub J. Homocysteine and arteriosclerosis. Circulation 1999; 99:2361–3.CrossrefGoogle Scholar

  • 2.

    Eikelboom JW, Lonn E, Genest J Jr, Hankey G, Yusuf S. Homocyst(e)ine and cardiovascular disease. Ann Intern Med 1999; 131:363–75.Google Scholar

  • 3.

    Refsum H, Ueland PM, Nygard O, Vollset SE. Homocysteine and cardiovascular disease. Annu Rev Med 1998; 49:31–62.CrossrefGoogle Scholar

  • 4.

    Bonaa KH, Njolstad I, Ueland PM, Schirmer H, Tverdal A, Steigen T, et al. NORVIT Trial Investigators. Homocysteine lowering and cardiovascular events after acute myocardial infarction. N Engl J Med 2006; 354:1578–88.Google Scholar

  • 5.

    Lonn E, Yusuf S, Arnold MJ, Sheridan P, Pogue J, Micks M, et al. Heart Outcomes Prevention Evaluation (HOPE) 2 Investigators. Homocysteine lowering with folic acid and B vitamins in vascular disease. N Engl J Med 2006; 354:1567–77.Google Scholar

  • 6.

    Nahlawi M, Seshadri N, Boparai N, Naso A, Jacobsen DW, McCarthy P, et al. Usefulness of plasma vitamin B6, B12, folate, homocysteine, and creatinine in predicting outcomes in heart transplant recipients. Am J Cardiol 2002; 89:834–37.CrossrefGoogle Scholar

  • 7.

    Schofield RS, Wessel TR, Walker TC, Cleeton TS, Hill JA, Aranda JM Jr, et al. Hyperhomocysteinemia in patients with heart failure referred for cardiac transplantation: preliminary observations. Clin Cardiol 2003; 26:407–10.CrossrefGoogle Scholar

  • 8.

    Bokhari SW, Bokhari ZW, Zell JA, Lee DW, Faxon DP. Plasma homocysteine levels and left ventricular systolic function in coronary artery disease patients. Coron Artery Dis 2005; 16:153–61.CrossrefGoogle Scholar

  • 9.

    Gibelin P, Serre S, Candito M, Houcher B, Berthier F, Baudouy M. Prognostic value of homocysteinemia in patients with congestive heart failure. Clin Chem Lab Med 2006; 44:813–6.CrossrefGoogle Scholar

  • 10.

    Vasan RS, Beiser A, D'Agostino R, Levy D, Selhub J, Jacques PF, et al. Plasma homocysteine and risk for congestive heart failure in adults without prior myocardial infarction. J Am Med Assoc 2003; 289:251–57.CrossrefGoogle Scholar

  • 11.

    Araki A, Sako Y. Determination of free and total homocysteine in human plasma by high-performance liquid chromatography with fluorescence detection. J Chromatogr 1987; 422:43–52.Google Scholar

  • 12.

    Ajayi AA. Estimation of creatinine clearance from serum creatinine: utility of the Cockroft and Gault equation in Nigerian patients. Eur J Clin Pharmacol 1991; 40:429–31.CrossrefGoogle Scholar

  • 13.

    Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976; 16:31–41.CrossrefGoogle Scholar

  • 14.

    Luke DR, Halstenson CE, Opsahl JA, Matzke GR. Validity of creatinine clearance estimates in the assessment of renal function. Clin Pharmacol Ther 1990; 48:503–8.CrossrefGoogle Scholar

  • 15.

    Robert S, Zarowitz BJ, Peterson EL, Dumler F. Predictability of creatinine clearance estimates in critically ill patients. Crit Care Med 1993; 21:1487–95.CrossrefGoogle Scholar

  • 16.

    Robertshaw M, Lai KN, Swaminathan R. Prediction of creatinine clearance from plasma creatinine: comparison of five formulae. Br J Clin Pharmacol 1989; 28:275–80.CrossrefGoogle Scholar

  • 17.

    Waller DG, Fleming JS, Ramsey B, Gray J. The accuracy of creatinine clearance with and without urine collection as a measure of glomerular filtration rate. Postgrad Med J 1991; 67:42–6.CrossrefGoogle Scholar

  • 18.

    Schiller NB, Shah PM, Crawford M, DeMaria A, Devereux R, Feigenbaum H, et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography: American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr 1989; 2:358–67.CrossrefGoogle Scholar

  • 19.

    Ljungman S, Kjekshus J, Swedberg K. Renal function in severe congestive heart failure during treatment with enalapril (the Cooperative North Scandinavian Enalapril Survival Study [CONSENSUS] trial). Am J Cardiol 1992; 70:479–87.CrossrefGoogle Scholar

  • 20.

    Van den Broek SA, Van Veldhuisen DJ, De Graeff PA, Landsman ML, Hillege H, Lie KI. Comparison between New York Heart Association classification and peak oxygen consumption in the assessment of functional status and prognosis in patients with mild to moderate chronic congestive heart failure secondary to either ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 1992; 70:359–63.Google Scholar

  • 21.

    Lieverse AG, Van Veldhuisen DJ, Smit AJ, Zijlstra JG, Meijer S, Reitsma WD, et al. Renal and systemic hemodynamic effects of ibopamine in patients with mild to moderate congestive heart failure. J Cardiovasc Pharmacol 1995; 25:361–67.CrossrefGoogle Scholar

  • 22.

    Ljungman S, Laragh JH, Cody RJ. Role of the kidney in congestive heart failure: relationship of cardiac index to kidney function. Drugs 1990; 39(Suppl 4):10–21.Google Scholar

  • 23.

    Wollesen F, Brattstrom L, Refsum H, Ueland PM, Berglund L, Berne C. Plasma total homocysteine and cysteine in relation to glomerular filtration rate in diabetes mellitus. Kidney Int 1999; 55:1028–35.CrossrefGoogle Scholar

  • 24.

    Bostom AG, Gohh RY, Bausserman L, Hakas D, Jacques PF, Selhub J, et al. Serum cystatin C as a determinant of fasting total homocysteine levels in renal transplant recipients with a normal serum creatinine. J Am Soc Nephrol 1999; 10:164–6.Google Scholar

  • 25.

    Norlund L, Grubb A, Fex G, Leksell H, Nilsson JE, Schenck H, et al. The increase of plasma homocysteine concentrations with age is partly due to the deterioration of renal function as determined by plasma cystatin C. Clin Chem Lab Med 1998; 36:175–8.CrossrefGoogle Scholar

  • 26.

    Bostom AG, Bausserman L, Jacques PF, Liaugaudas G, Selhub J, Rosenberg IH. Cystatin C as a determinant of fasting plasma total homocysteine levels in coronary artery disease patients with normal serum creatinine. Arterioscler Thromb Vasc Biol 1999; 19:2241–4.CrossrefGoogle Scholar

  • 27.

    Siroka R, Trefil L, Rajdl D, Racek J, Rusnakova H, Cibulka R, et al. Asymmetric dimethylarginine, homocysteine and renal function – is there a relation? Clin Chem Lab Med 2005; 43:1147–50.CrossrefGoogle Scholar

  • 28.

    Arnadottir M, Hultberg B, Nilsson-Ehle P, Thysell H. The effect of reduced glomerular filtration rate on plasma total homocysteine concentration. Scand J Clin Lab Invest 1996; 56:41–6.CrossrefGoogle Scholar

  • 29.

    Fliser D, Franek E, Joest M, Block S, Mutschler E, Ritz E. Renal function in the elderly: impact of hypertension and cardiac function. Kidney Int 1997; 51:1196–204.CrossrefGoogle Scholar

  • 30.

    Ventura P, Panini R, Veriato C, Scarpetta G, Salvioli G. Hyperhomocysteinemia and related factors in 600 hospitalized elderly subjects. Metabolism 2001; 50:1466–71.CrossrefGoogle Scholar

  • 31.

    Guttormsen AB, Ueland PM, Svarstad E, Refsum H. Kinetic basis of hyperhomocysteinemia in patients with chronic renal failure. Kidney Int 1997; 52:495–502.CrossrefGoogle Scholar

  • 32.

    Herzlich BC, Lichstein E, Schulhoff N, Weinstock M, Pagala M, Ravindran K, et al. Relationship among homocysteine, vitamin B-12 and cardiac disease in the elderly: association between vitamin B-12 deficiency and decreased left ventricular ejection fraction. J Nutr 1996; 126:1249S–53S.Google Scholar

  • 33.

    Nygard O, Nordrehaug JE, Refsum H, Ueland PM, Farstad M, Vollset SE. Plasma homocysteine levels and mortality in patients with coronary heart disease. N Engl J Med 1997; 337:230–6.Google Scholar

  • 34.

    Homocysteine Studies Collaboration. Homocysteine and risk of ischemic heart disease and stroke: a meta analysis. J Am Med Assoc 2002;288:2015–22.Google Scholar

About the article

Corresponding author: Nur Aksoy, MD, University of Gaziantep, Vocational School of Higher Education for Health Services, Gaziantep 27310, Turkey Phone: +90-342-3601200, Fax: +90-342-3603928

Received: 2006-06-11

Accepted: 2006-08-25

Published Online: 2006-11-07

Published in Print: 2006-11-01

Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/CCLM.2006.245.

Export Citation

©2006 by Walter de Gruyter Berlin New York. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Anna Pastore, Annalisa Noce, Gianna Di Giovamberardino, Alessandro De Stefano, Cinzia Callà, Rossella Zenobi, Mariarita Dessì, and Nicola Di Daniele
Journal of Nephrology, 2015, Volume 28, Number 5, Page 571
Z. Rafeq, J.D. Roh, P. Guarino, J. Kaufman, and J. Joseph
Nutrition, Metabolism and Cardiovascular Diseases, 2013, Volume 23, Number 9, Page 836
I. S. Young and J. V. Woodside
International Journal of Clinical Practice, 2010, Volume 64, Number 3, Page 281

Comments (0)

Please log in or register to comment.
Log in