Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Greaves, Ronda / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter


IMPACT FACTOR 2018: 3.638

CiteScore 2018: 2.44

SCImago Journal Rank (SJR) 2018: 1.191
Source Normalized Impact per Paper (SNIP) 2018: 1.205

Online
ISSN
1437-4331
See all formats and pricing
More options …
Volume 44, Issue 12

Issues

Increase in and clearance of cell-free plasma DNA in hemodialysis quantified by real-time PCR

Vanessa García Moreira
  • Servicio de Bioquímica Clínica, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tamara de la Cera Martínez
  • Servicio de Bioquímica Clínica, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Emilio Gago González
  • Unidad de Hemodiálisis, Servicio de Nefrología I, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Belén Prieto García
  • Servicio de Bioquímica Clínica, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Francisco V. Alvarez Menéndez
  • Servicio de Bioquímica Clínica, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain and Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Asturias, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2006-12-13 | DOI: https://doi.org/10.1515/CCLM.2006.252

Abstract

Background: Recently cell-free plasma DNA has been described as a marker of apoptosis during hemodialysis (HD), but little is known about how different dialysis membranes may contribute to this process or whether pre-HD levels are restored afterwards. Here we evaluate the influence of the dialysis membrane on cell-free plasma DNA levels and investigate the clearance of plasma circulating DNA after HD.

Methods: Cell-free plasma DNA was measured using a real-time quantitative PCR for the β-globin gene. Reference values for plasma DNA were established in a group of 100 healthy voluntary blood donors. Pre- and post-HD levels were also measured in 30 patients with end-stage renal disease on regular HD (52 sessions; 104 samples). The sessions lasted for 2.5–5h. Different dialysis membranes were compared: high-flux (n=37) vs. low-flux (n=15) and polysulfone (n=42) vs. modified cellulose (n=10). To determine the time at which pre-HD levels are restored, DNA was quantified in serial plasma samples obtained from 10 of these 30 patients, just before and immediately after HD, as well as at 30, 60 and 120min after HD.

Results: Reference plasma DNA values for healthy blood donors ranged from 112 to 2452gEq/mL (median 740gEq/mL). Cell-free plasma DNA levels significantly increased during HD (Wilcoxon test for paired samples, p<0.0001), with increases of more than four-fold observed in 75% of the patients after HD. There was no significant linear association between the length of the HD session (between 2.5 and 5h) and the increase in cell-free plasma DNA concentration (Pearson correlation). No significant differences were observed between different types of membranes (Mann-Whitney U-test). Plasma DNA returned to pre-HD levels by 30min after HD, regardless of the starting concentration.

Conclusions: Plasma DNA levels significantly increase after a conventional 2.5–5-h HD session. Therefore, HD patients require special consideration for correct interpretation of plasma DNA concentrations. This parameter can be considered a reliable diagnostic tool for certain pathologies when measured at least 30min after a HD session without further complications. The different dialysis membranes used in this study had no influence on cell-free plasma DNA concentrations, so the level of circulating DNA is not an appropriate marker of dialysis membrane biocompatibility.

Clin Chem Lab Med 2006;44:1410–5.

Keywords: apoptosis; cell-free plasma DNA; circulating DNA; dialysis membrane; hemodialysis; real-time PCR; renal insufficiency

References

  • 1.

    Mandel P, Metais P. Les acides nucleiques du plasma sanguine chez l'homme. CR Acad Sci Paris 1948; 142:241–3.Google Scholar

  • 2.

    Tong YK, Lo YM. Diagnostic developments involving cell-free (circulating) nucleic acids. Clin Chim Acta 2006; 363:187–96.Google Scholar

  • 3.

    Taback B, Hoon DS. Circulating nucleic acids in plasma and serum: past, present and future. Curr Opin Mol Ther 2004; 6:273–8.Google Scholar

  • 4.

    Wu TL, Zhang D, Chia JH, Tsao KH, Sun CF, Wu JT. Cell-free DNA: measurement in various carcinomas and establishment of normal reference range. Clin Chim Acta 2002; 321:77–87.Google Scholar

  • 5.

    Lo YM, Tein MS, Lau TK, Haines CJ, Leeung TM, Poon PM, et al. Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet 1998; 62:768–75.Google Scholar

  • 6.

    Rainer TH, Wong LK, Lam W, Yuen E, Lam NY, Metreweli C, et al. Prognostic use of circulating plasma nucleic acid concentrations in patients with acute stroke. Clin Chem 2003; 49:562–9.Google Scholar

  • 7.

    Lo YM, Rainer TH, Chan LY, Hjelm NM, Cocks RA. Plasma DNA as a prognostic marker in trauma patients. Clin Chem 2000; 46:319–23.Google Scholar

  • 8.

    Lo YM, Tein MS, Pang CC, Yeung CK, Tong KL, Hjelm NM. Presence of donor-specific DNA in plasma of kidney and liver-transplant recipients. Lancet 1998; 351:1329–30.Google Scholar

  • 9.

    Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, et al. DNA fragments in the blood plasma of cancer patients: quantitation and evidence for their origin from apoptotic and necrotic cells. Cancer Res 2001; 61:1659–65.Google Scholar

  • 10.

    Stroun M, Lyautey J, Lederrey C, Olson-Sand A, Anker P. About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin Chim Acta 2001; 313:139–42.Google Scholar

  • 11.

    Gadi VK, Nelson JL, Boespflug ND, Guthrie KA, Kuhr C. Soluble donor DNA concentrations in recipient serum correlate with pancreas-kidney rejection. Clin Chem 2006; 52:379–82.Google Scholar

  • 12.

    Zhong XY, Hahn D, Troeger C, Klemm A, Stein G, Thomson P, et al. Cell-free DNA in urine: a marker for kidney graft rejection, but not for prenatal diagnosis? Ann NY Acad Sci 2001; 945:250–7.Google Scholar

  • 13.

    Atamaniuk J, Ruzicka K, Stuhlmeier KM, Karimi A, Eigner M, Mueller MM. Cell-free plasma DNA: a marker for apoptosis during hemodialysis. Clin Chem 2006; 52:523–6.Google Scholar

  • 14.

    Steinman CR, Ackad A. Appearance of circulating DNA during hemodialysis. Am J Med 1977; 62:693–7.CrossrefGoogle Scholar

  • 15.

    Fournie GJ, Lule J, Dueymes JM, Laval F, Delobbe I, Vernier I, et al. Plasma DNA in patients undergoing hemodialysis or hemofiltration: cytolysis in artificial kidney is responsible for the release of DNA in circulation. Am J Nephrol 1989; 9:384–91.Google Scholar

  • 16.

    Ministerio de Sanidad y Consumo-Instituto de Salud Carlos III. Agencia de Evaluación de Tecnologías Sanitarias (AETS). Evaluación de los diferentes tipos de membranas de hemodiálisis. June 1996.Google Scholar

  • 17.

    Kaplow LS, Goffinet JA. Profound neutropenia during the early phase of hemodialysis. J Am Med Assoc 1968; 203:1135–7.Google Scholar

  • 18.

    Craddock PR, Fehr J, Dalmasso AP, Brighan KL, Jacob HS. Hemodialysis leukopenia. Pulmonary vascular leukostasis resulting from complement activation by dialyzer cellophane membranes. J Clin Invest 1977; 59:879–88.Google Scholar

  • 19.

    Panichi V, Migliori M, De Pietro S, Taccola D, Andreini B, Metelli MR, et al. The link of biocompatibility to cytokine production. Kidney Int 2000; 76 (Suppl):S96–103.CrossrefGoogle Scholar

  • 20.

    Pertosa G, Grandaliano G, Gesualdo L, Schena FP. Clinical relevance of cytokine production in hemodialysis. Kidney Int 2000; 76 (Suppl):S104–11.CrossrefGoogle Scholar

  • 21.

    Ghysen J, De Plaen JF, van Ypersele de Strihou C. The effect of membrane characteristics on tumour necrosis factor kinetics during haemodialysis. Nephrol Dial Transplant 1990; 5:270–4.CrossrefGoogle Scholar

  • 22.

    Schindler R, Ertl T, Beck W, Lepenies J, Boenisch O, Oppermann M, et al. Reduced cytokine induction and removal of complement products with synthetic hemodialysis membranes. Blood Purif 2006; 24:203–11.CrossrefGoogle Scholar

  • 23.

    Holdenrieder S, Stieber P, Bodenmuller H, Busch M, Von Pawel J, Schalhorn A, et al. Circulating nucleosomes in serum. Ann NY Acad Sci 2001; 945:93–102.Google Scholar

  • 24.

    Gauthier VJ, Tyler LN, Mannik M. Blood clearance kinetics and liver uptake of mononucleosomes in mice. J Immunol 1996; 156:1151–6.Google Scholar

  • 25.

    Kobayashi N, Kuramoto T, Yamaoka K, Hashida M, Takakura Y. Hepatic uptake and gene expression mechanisms following intravenous administration of plasmid DNA by conventional and hydrodynamics-based procedures. J Pharmacol Exp Ther 2001; 297:853–60.Google Scholar

  • 26.

    Botezatu I, Serdyuk O, Potapova G, Shelepov V, Alechina R, Molyaka Y, et al. Genetic analysis of DNA excreted in urine: a new approach for detecting specific genomic DNA sequences from cells dying in an organism. Clin Chem 2000; 46:1078–84.Google Scholar

  • 27.

    Lo YMD, Zhang J, Leung TN, Lau TK, Chang AM, Hjelm NM. Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet 1999; 64:218–24.Google Scholar

  • 28.

    Lau TW, Leung TN, Chan LY, Lau TK, Chan KC, Tam WH, et al. DNA clearance from maternal plasma is impaired in preeclampsia. Clin Chem 2002; 48:2141–6.Google Scholar

  • 29.

    Burlingame RW, Volzer MA, Harris J, Du Clos TW. The effect of acute phase proteins on clearance of chromatin from the circulation of normal mice. J Immunol 1996; 156:4783–8.Google Scholar

About the article

Corresponding author: Francisco V. Alvarez Menéndez, Servicio de Bioquímica Clínica, Hospital Universitario Central de Asturias, 33006 Oviedo, Spain Phone/fax: +34-98-5108073,


Received: 2006-05-29

Accepted: 2006-08-29

Published Online: 2006-12-13

Published in Print: 2006-12-01


Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), Volume 44, Issue 12, Pages 1410–1415, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/CCLM.2006.252.

Export Citation

©2006 by Walter de Gruyter Berlin New York.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Peter Celec, Barbora Vlková, Lucia Lauková, Janka Bábíčková, and Peter Boor
Expert Reviews in Molecular Medicine, 2018, Volume 20
[2]
Els M Gielis, Kristien J Ledeganck, Amélie Dendooven, Pieter Meysman, Charlie Beirnaert, Kris Laukens, Joachim De Schrijver, Steven Van Laecke, Wim Van Biesen, Marie-Paule Emonds, Benedicte Y De Winter, Jean-Louis Bosmans, Jurgen Del Favero, and Daniel Abramowicz
Nephrology Dialysis Transplantation, 2019
[3]
Anatoli Kustanovich, Ruth Schwartz, Tamar Peretz, and Albert Grinshpun
Cancer Biology & Therapy, 2019, Volume 20, Number 8, Page 1057
[4]
Els M. Gielis, Charlie Beirnaert, Amélie Dendooven, Pieter Meysman, Kris Laukens, Joachim De Schrijver, Steven Van Laecke, Wim Van Biesen, Marie-Paule Emonds, Benedicte Y. De Winter, Jean-Louis Bosmans, Jurgen Del Favero, Daniel Abramowicz, Kristien J. Ledeganck, and Pierre Delanaye
PLOS ONE, 2018, Volume 13, Number 12, Page e0208207
[5]
Marcus A Zachariah, Joao Paulo Oliveira-Costa, Bob S Carter, Shannon L Stott, and Brian V Nahed
Neuro-Oncology, 2018
[6]
Marianna Gyurászová, Alexandra Kovalčíková, Janka Bábíčková, Július Hodosy, and Ľubomíra Tóthová
Journal of Applied Biomedicine, 2018
[7]
Peng Xia, Ramin Radpour, Rebecca Zachariah, Alex Xiu Cheng Fan, Corina Kohler, Sinuhe Hahn, Wolfgang Holzgreve, and Xiao Yan Zhong
Genetics and Molecular Biology, 2009, Volume 32, Number 1, Page 20
[8]
Luis A. Diaz and Alberto Bardelli
Journal of Clinical Oncology, 2014, Volume 32, Number 6, Page 579
[9]
[10]
D. Tovbin, V. Novack, M. P. Wiessman, A. A. Elkadir, M. Zlotnik, and A. Douvdevani
Nephrology Dialysis Transplantation, 2012, Volume 27, Number 10, Page 3929
[11]
J. Atamaniuk, C. Kopecky, S. Skoupy, M. D. Saemann, and T. Weichhart
Nephrology Dialysis Transplantation, 2012, Volume 27, Number 3, Page 902
[12]
Vanessa García Moreira, Belén Prieto García, Tamara de la Cera Martínez, and Francisco V. Álvarez Menéndez
Clinical Biochemistry, 2009, Volume 42, Number 7-8, Page 729
[13]
Marjatta Okkonen, Päivi Lakkisto, Anna-Maija Korhonen, Ilkka Parviai-nen, Matti Reinikainen, Tero Varpula, and Ville Pettilä
Critical Care, 2011, Volume 15, Number 4, Page R196
[14]
Jörg Ellinger, David C. Müller, Stefan C. Müller, Stefan Hauser, Lukas C. Heukamp, Alexander von Ruecker, Patrick J. Bastian, and Gisela Walgenbach-Brunagel
Urologic Oncology: Seminars and Original Investigations, 2012, Volume 30, Number 4, Page 509
[15]
Francisco Arnalich, Maria Constanza Maldifassi, Enrique Ciria, Angustias Quesada, Rosa Codoceo, Rafael Herruzo, Carlos Garcia-Cerrada, Fernando Montoya, Juan José Vazquez, Eduardo López-Collazo, and Carmen Montiel
Clinica Chimica Acta, 2010, Volume 411, Number 17-18, Page 1269
[16]
Marie Korabecna, Sylvie Opatrna, Jan Wirth, Kamila Rulcova, Jaromir Eiselt, Frantisek Sefrna, and Ales Horinek
Annals of the New York Academy of Sciences, 2008, Volume 1137, Number 1, Page 296
[17]
Christoph Kirsch, Sabine Weickmann, Bernd Schmidt, and Michael Fleischhacker
Annals of the New York Academy of Sciences, 2008, Volume 1137, Number 1, Page 135

Comments (0)

Please log in or register to comment.
Log in