Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Greaves, Ronda / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter


IMPACT FACTOR 2018: 3.638

CiteScore 2018: 2.44

SCImago Journal Rank (SJR) 2018: 1.191
Source Normalized Impact per Paper (SNIP) 2018: 1.205

Online
ISSN
1437-4331
See all formats and pricing
More options …
Volume 44, Issue 12

Issues

Initiation and progression of atherosclerosis – enzymatic or oxidative modification of low-density lipoprotein?

Michael Torzewski
  • Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg-University of Mainz, Mainz, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Karl J. Lackner
  • Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg-University of Mainz, Mainz, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2006-12-13 | DOI: https://doi.org/10.1515/CCLM.2006.259

Abstract

Atherosclerosis is widely regarded as a chronic inflammatory disease that develops as a consequence of entrapment of low-density lipoprotein (LDL) in the arterial intima. Native LDL lacks inflammatory properties, so the lipoprotein must undergo biochemical alterations to become atherogenic. Among several other candidates, two different concepts of lipoprotein modification are propagated, the widespread oxidation hypothesis and the less common E-LDL hypothesis, which proposes that modification of LDL occurs through the action of ubiquitous hydrolytic enzymes (enzymatically modified LDL or E-LDL) rather than oxidation. By clearly distinguishing between the initiation and progression of atherosclerotic lesion development, this article reviews comparative studies of both types of lipoprotein modification and submits a viewpoint for discussion proposing that these lipoprotein modifications do not really compete, but rather complement one another. According to this concept, E-LDL might be more important for the initiation of atherosclerosis, while oxidative modification of LDL might be more helpful for diagnosis and prognosis of the disease.

Clin Chem Lab Med 2006;44:1389–94.

Keywords: atherosclerosis; enzymatically modified low-density lipoprotein (E-LDL); lipoproteins; macrophage; oxidized LDL (OxLDL)

References

  • 1.

    Ross R. Atherosclerosis – an inflammatory disease. N Engl J Med 1999; 340:115–26.Google Scholar

  • 2.

    Williams KJ, Tabas I. The response-to-retention hypothesis of atherogenesis reinforced. Curr Opin Lipidol 1998; 9:471–4.CrossrefGoogle Scholar

  • 3.

    Steinberg D. Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem 1997; 272:20963–6.Google Scholar

  • 4.

    Bhakdi S, Lackner KJ, Han SR, Torzewski M, Husmann M. Beyond cholesterol: the enigma of atherosclerosis revisited. Thromb Haemost 2004; 91:639–45.Google Scholar

  • 5.

    Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 1989; 320:915–24.Google Scholar

  • 6.

    Berliner JA, Territo MC, Sevanian A, Ramin S, Kim JA, Bamshad B, et al. Minimally modified low density lipoprotein stimulates monocyte endothelial interactions. J Clin Invest 1990; 85:1260–6.CrossrefGoogle Scholar

  • 7.

    Cushing SD, Berliner JA, Valente AJ, Territo MC, Navab M, Parhami F, et al. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci USA 1990; 87:5134–8.Google Scholar

  • 8.

    Terkeltaub R, Banka CL, Solan J, Santoro D, Brand K, Curtiss LK. Oxidized LDL induces monocytic cell expression of interleukin-8, a chemokine with T-lymphocyte chemotactic activity. Arterioscler Thromb 1994; 14:47–53.Google Scholar

  • 9.

    Palinski W, Witztum JL. Immune responses to oxidative neoepitopes on LDL and phospholipids modulate the development of atherosclerosis. J Intern Med 2000; 247:371–80.Google Scholar

  • 10.

    Maseri A, Fuster V. Is there a vulnerable plaque? Circulation 2003; 107:2068–71.Google Scholar

  • 11.

    Aikawa M, Libby P. The vulnerable atherosclerotic plaque: pathogenesis and therapeutic approach. Cardiovasc Pathol 2004; 13:125–38.CrossrefGoogle Scholar

  • 12.

    Madjid M, Zarrabi A, Litovsky S, Willerson JT, Casscells W. Finding vulnerable atherosclerotic plaques: is it worth the effort? Arterioscler Thromb Vasc Biol 2004; 24:1775–82.CrossrefGoogle Scholar

  • 13.

    Palinski W, Rosenfeld ME, Yla-Herttuala S, Gurtner GC, Socher SS, Butler SW, et al. Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci USA 1989; 86:1372–6.CrossrefGoogle Scholar

  • 14.

    Yla-Herttuala S, Palinski W, Rosenfeld ME, Parthasarathy S, Carew TE, Butler S, et al. Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest 1989; 84:1086–95.Google Scholar

  • 15.

    Shaw PX, Horkko S, Tsimikas S, Chang MK, Palinski W, Silverman GJ, et al. Human-derived anti-oxidized LDL autoantibody blocks uptake of oxidized LDL by macrophages and localizes to atherosclerotic lesions in vivo. Arterioscler Thromb Vasc Biol 2001; 21:1333–9.CrossrefGoogle Scholar

  • 16.

    Tsimikas S, Palinski W, Halpern SE, Yeung DW, Curtiss LK, Witztum JL. Radiolabeled MDA2, an oxidation-specific, monoclonal antibody, identifies native atherosclerotic lesions in vivo. J Nucl Cardiol 1999; 6:41–53.CrossrefGoogle Scholar

  • 17.

    Tsimikas S, Shortal BP, Witztum JL, Palinski W. In vivo uptake of radiolabeled MDA2, an oxidation-specific monoclonal antibody, provides an accurate measure of atherosclerotic lesions rich in oxidized LDL and is highly sensitive to their regression. Arterioscler Thromb Vasc Biol 2000; 20:689–97.CrossrefGoogle Scholar

  • 18.

    Torzewski M, Shaw PX, Han KR, Shortal B, Lackner KJ, Witztum JL, et al. Reduced in vivo aortic uptake of radiolabeled oxidation-specific antibodies reflects changes in plaque composition consistent with plaque stabilization. Arterioscler Thromb Vasc Biol 2004; 24:2307–12.CrossrefGoogle Scholar

  • 19.

    Napoli C, D'Armiento FP, Mancini FP, Postiglione A, Witztum JL, Palumbo G, et al. Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions. J Clin Invest 1997; 100:2680–90.CrossrefGoogle Scholar

  • 20.

    Calara F, Dimayuga P, Niemann A, Thyberg J, Diczfalusy U, Witztum JL, et al. An animal model to study local oxidation of LDL and its biological effects in the arterial wall. Arterioscler Thromb Vasc Biol 1998; 18:884–93.CrossrefGoogle Scholar

  • 21.

    Kruth HS. Localization of unesterified cholesterol in human atherosclerotic lesions. Demonstration of filipin-positive, oil-red-O-negative particles. Am J Pathol 1984; 114:201–8.Google Scholar

  • 22.

    Kruth HS. Subendothelial accumulation of unesterified cholesterol. An early event in atherosclerotic lesion development. Atherosclerosis 1985; 57:337–41.CrossrefGoogle Scholar

  • 23.

    Sakurada T, Orimo H, Okabe H, Noma A, Murakami M. Purification and properties of cholesterol ester hydrolase from human aortic intima and media. Biochim Biophys Acta 1976; 424:204–12.Google Scholar

  • 24.

    Hakala JK, Oksjoki R, Laine P, Du H, Grabowski GA, Kovanen PT, et al. Lysosomal enzymes are released from cultured human macrophages hydrolyze LDL in vitro and are present extracellularly in human atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2003; 23:1430–6.CrossrefGoogle Scholar

  • 25.

    Torzewski M, Klouche M, Hock J, Messner M, Dorweiler B, Torzewski J, et al. Immunohistochemical demonstration of enzymatically modified human LDL and its colocalization with the terminal complement complex in the early atherosclerotic lesion. Arterioscler Thromb Vasc Biol 1998; 18:369–78.CrossrefGoogle Scholar

  • 26.

    Bhakdi S, Dorweiler B, Kirchmann R, Torzewski J, Weise E, Tranum-Jensen J, et al. On the pathogenesis of atherosclerosis: enzymatic transformation of human low density lipoprotein to an atherogenic moiety. J Exp Med 1995; 182:1959–71.Google Scholar

  • 27.

    Kapinsky M, Torzewski M, Buchler C, Duong CQ, Rothe G, Schmitz G. Enzymatically degraded LDL preferentially binds to CD14(high) CD16(+) monocytes and induces foam cell formation mediated only in part by the class B scavenger-receptor CD36. Arterioscler Thromb Vasc Biol 2001; 21:1004–10.CrossrefGoogle Scholar

  • 28.

    Kruth HS, Zhang WY, Skarlatos SI, Chao FF. Apolipoprotein B stimulates formation of monocyte-macrophage surface-connected compartments and mediates uptake of low density lipoprotein-derived liposomes into these compartments. J Biol Chem 1999; 274:7495–500.Google Scholar

  • 29.

    Seifert PS, Hugo F, Tranum-Jensen J, Zahringer U, Muhly M, Bhakdi S. Isolation and characterization of a complement-activating lipid extracted from human atherosclerotic lesions. J Exp Med 1990; 172:547–57.Google Scholar

  • 30.

    Suriyaphol P, Fenske D, Zahringer U, Han SR, Bhakdi S, Husmann M. Enzymatically modified nonoxidized low-density lipoprotein induces interleukin-8 in human endothelial cells: role of free fatty acids. Circulation 2002; 106:2581–7.Google Scholar

  • 31.

    Dersch K, Ichijo H, Bhakdi S, Husmann M. Fatty acids liberated from low-density lipoprotein trigger endothelial apoptosis via mitogen-activated protein kinases. Cell Death Differ 2005; 12:1107–14.CrossrefGoogle Scholar

  • 32.

    Torzewski M, Suriyaphol P, Paprotka K, Spath L, Ochsenhirt V, Schmitt A, et al. Enzymatic modification of low-density lipoprotein in the arterial wall: a new role for plasmin and matrix metalloproteinases in atherogenesis. Arterioscler Thromb Vasc Biol 2004; 24:2130–6.CrossrefGoogle Scholar

  • 33.

    Scirica BM, Morrow DA. Is C-reactive protein an innocent bystander or proatherogenic culprit? The verdict is still out. Circulation 2006; 113:2128–34; discussion 51.Google Scholar

  • 34.

    Jialal I, Devaraj S, Venugopal SK. C-Reactive protein: risk marker or mediator in atherothrombosis? Hypertension 2004; 44:6–11.CrossrefGoogle Scholar

  • 35.

    Verma S, Szmitko PE, Yeh ET. C-Reactive protein: structure affects function. Circulation 2004; 109:1914–7.Google Scholar

  • 36.

    Torzewski J, Torzewski M, Bowyer DE, Frohlich M, Koenig W, Waltenberger J, et al. C-reactive protein frequently colocalizes with the terminal complement complex in the intima of early atherosclerotic lesions of human coronary arteries. Arterioscler Thromb Vasc Biol 1998; 18:1386–92.CrossrefGoogle Scholar

  • 37.

    Bhakdi S, Torzewski M, Klouche M, Hemmes M. Complement and atherogenesis: binding of CRP to degraded, nonoxidized LDL enhances complement activation. Arterioscler Thromb Vasc Biol 1999; 19:2348–54.CrossrefGoogle Scholar

  • 38.

    Seifert PS, Hugo F, Hansson GK, Bhakdi S. Prelesional complement activation in experimental atherosclerosis. Terminal C5b-9 complement deposition coincides with cholesterol accumulation in the aortic intima of hypercholesterolemic rabbits. Lab Invest 1989; 60:747–54.Google Scholar

  • 39.

    Schmiedt W, Kinscherf R, Deigner HP, Kamencic H, Nauen O, Kilo J, et al. Complement C6 deficiency protects against diet-induced atherosclerosis in rabbits. Arterioscler Thromb Vasc Biol 1998; 18:1790–5.Google Scholar

  • 40.

    Torzewski M, Torzewski J, Bowyer DE, Waltenberger J, Fitzsimmons C, Hombach V, et al. Immunohistochemical colocalization of the terminal complex of human complement and smooth muscle cell alpha-actin in early atherosclerotic lesions. Arterioscler Thromb Vasc Biol 1997; 17:2448–52.CrossrefGoogle Scholar

  • 41.

    Torzewski J, Oldroyd R, Lachmann P, Fitzsimmons C, Proudfoot D, Bowyer D. Complement-induced release of monocyte chemotactic protein-1 from human smooth muscle cells. A possible initiating event in atherosclerotic lesion formation. Arterioscler Thromb Vasc Biol 1996; 16:673–7.CrossrefGoogle Scholar

  • 42.

    Bhakdi S, Torzewski M, Paprotka K, Schmitt S, Barsoom H, Suriyaphol P, et al. Possible protective role for C-reactive protein in atherogenesis: complement activation by modified lipoproteins halts before detrimental terminal sequence. Circulation 2004; 109:1870–6.Google Scholar

  • 43.

    Gershov D, Kim S, Brot N, Elkon KB. C-Reactive protein binds to apoptotic cells, protects the cells from assembly of the terminal complement components, and sustains an antiinflammatory innate immune response: implications for systemic autoimmunity. J Exp Med 2000; 192:1353–64.Google Scholar

  • 44.

    Verma S, Devaraj S, Jialal I. Is C-reactive protein an innocent bystander or proatherogenic culprit? C-reactive protein promotes atherothrombosis. Circulation 2006; 113:2135–50; discussion 50.Google Scholar

  • 45.

    Torzewski J. C-Reactive protein and atherogenesis: new insights from established animal models. Am J Pathol 2005; 167:923–5.Google Scholar

  • 46.

    Chang MK, Binder CJ, Torzewski M, Witztum JL. C-Reactive protein binds to both oxidized LDL and apoptotic cells through recognition of a common ligand: phosphorylcholine of oxidized phospholipids. Proc Natl Acad Sci USA 2002; 99:13043–8.Google Scholar

  • 47.

    Horkko S, Bird DA, Miller E, Itabe H, Leitinger N, Subbanagounder G, et al. Monoclonal autoantibodies specific for oxidized phospholipids or oxidized phospholipid-protein adducts inhibit macrophage uptake of oxidized low-density lipoproteins. J Clin Invest 1999; 103:117–28.Google Scholar

  • 48.

    Shaw PX, Horkko S, Chang MK, Curtiss LK, Palinski W, Silverman GJ, et al. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J Clin Invest 2000; 105:1731–40.Google Scholar

  • 49.

    Zwaka TP, Hombach V, Torzewski J. C-Reactive protein-mediated low density lipoprotein uptake by macrophages: implications for atherosclerosis. Circulation 2001; 103:1194–7.Google Scholar

  • 50.

    Wieland E, Dorweiler B, Bonitz U, Lieser S, Walev I, Bhakdi S. Complement activation by oxidatively modified low-density lipoproteins. Eur J Clin Invest 1999; 29:835–41.CrossrefGoogle Scholar

  • 51.

    Xu XP, Meisel SR, Ong JM, Kaul S, Cercek B, Rajavashisth TB, et al. Oxidized low-density lipoprotein regulates matrix metalloproteinase-9 and its tissue inhibitor in human monocyte-derived macrophages. Circulation 1999; 99:993–8.Google Scholar

  • 52.

    Stocker R, Keaney JF Jr. Role of oxidative modifications in atherosclerosis. Physiol Rev 2004; 84:1381–478.Google Scholar

  • 53.

    Smith JD, Trogan E, Ginsberg M, Grigaux C, Tian J, Miyata M. Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc Natl Acad Sci USA 1995; 92:8264–8.CrossrefGoogle Scholar

  • 54.

    Qiao JH, Tripathi J, Mishra NK, Cai Y, Tripathi S, Wang XP, et al. Role of macrophage colony-stimulating factor in atherosclerosis: studies of osteopetrotic mice. Am J Pathol 1997; 150:1687–99.Google Scholar

  • 55.

    Rajavashisth T, Qiao JH, Tripathi S, Tripathi J, Mishra N, Hua M, et al. Heterozygous osteopetrotic (op) mutation reduces atherosclerosis in LDL receptor- deficient mice. J Clin Invest 1998; 101:2702–10.CrossrefGoogle Scholar

About the article

Corresponding author: Michael Torzewski, MD, Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University, 55101 Mainz, Germany Phone: +49-6131-175083, Fax: +49-6131-17475083,


Received: 2006-06-02

Accepted: 2006-07-30

Published Online: 2006-12-13

Published in Print: 2006-12-01


Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), Volume 44, Issue 12, Pages 1389–1394, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/CCLM.2006.259.

Export Citation

©2006 by Walter de Gruyter Berlin New York.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Christian A. Gleissner, Norbert Leitinger, and Klaus Ley
Hypertension, 2007, Volume 50, Number 2, Page 276
[2]
Laura Twardowski, Fei Cheng, Jens Michaelsen, Stefan Winter, Ute Hofmann, Elke Schaeffeler, Simon Müller, Maike Sonnenberg, Kristin Steuer, German Ott, Matthias Schwab, Ulrich F. W. Franke, and Michael Torzewski
Journal of the American Heart Association, 2015, Volume 4, Number 10
[3]
Bijoy Chellan, Elizabeth Rojas, Chunling Zhang, and Marion A. Hofmann Bowman
Scientific Reports, 2018, Volume 8, Number 1
[4]
Fei Cheng, Laura Twardowski, Sarah Fehr, Christoph Aner, Elke Schaeffeler, Thomas Joos, Thomas Knorpp, Bernhard Dorweiler, Stefan Laufer, Matthias Schwab, and Michael Torzewski
The FASEB Journal, 2017, Volume 31, Number 2, Page 674
[5]
Joshua A. Dubland and Gordon A. Francis
Frontiers in Cell and Developmental Biology, 2015, Volume 3
[6]
Lihua Li, Suining Xu, Jinchuan Yan, Yuefeng Li, Xiaodong Wang, Rui Du, Jie Zhu, Xianli Fu, Xu Xiao, and Zhongqun Wang
International Journal of Cardiology, 2015, Volume 182, Page 361
[7]
Michael Torzewski and Sucharit Bhakdi
Clinical Biochemistry, 2013, Volume 46, Number 1-2, Page 20
[8]
Ryan T. Hamilton, Liana Asatryan, Jon T. Nilsen, Jose M. Isas, Timothy K. Gallaher, Tatsuya Sawamura, and Tzung K. Hsiai
Archives of Biochemistry and Biophysics, 2008, Volume 479, Number 1, Page 1
[9]
Michael Torzewski, Bianca Navarro, Fei Cheng, Antje Canisius, Talkea Schmidt, Sucharit Bhakdi, Reinhard Urban, and Karl J. Lackner
Atherosclerosis, 2009, Volume 206, Number 1, Page 159
[10]
Elvira O. Gosmanova and Ngoc-Anh Le
Cardiology Research and Practice, 2011, Volume 2011, Page 1
[11]
Gérard J. Arlaud, Adrienn Biro, and Wai Li Ling
Journal of Lipids, 2011, Volume 2011, Page 1
[12]
László Selmeci, Leila Seres, Mária Székely, Pál Soós, and György Acsády
Clinical Chemistry and Laboratory Medicine, 2010, Volume 48, Number 3
[13]
D. Siegel-Axel, K. Daub, P. Seizer, S. Lindemann, and M. Gawaz
Cardiovascular Research, 2008, Volume 78, Number 1, Page 8
[14]
Jung Rok Lee, Jae Kyung Kim, Soo Jae Lee, and Kwang Pyo Kim
Archives of Pharmacal Research, 2009, Volume 32, Number 8, Page 1109
[15]
B. Dorweiler and C.-F. Vahl
Zeitschrift für Herz-,Thorax- und Gefäßchirurgie, 2007, Volume 21, Number 6, Page 225

Comments (0)

Please log in or register to comment.
Log in