Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Greaves, Ronda / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter


IMPACT FACTOR 2018: 3.638

CiteScore 2018: 2.44

SCImago Journal Rank (SJR) 2018: 1.191
Source Normalized Impact per Paper (SNIP) 2018: 1.205

Online
ISSN
1437-4331
See all formats and pricing
More options …
Volume 44, Issue 12

Issues

Combining markers of nephrotoxicity and hepatotoxicity for improved monitoring and detection of chronic alcohol abuse

Ewa Taracha / Bogusław Habrat
  • Department of Substance Dependence Prevention and Treatment, Institute of Psychiatry and Neurology, Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stanisław J. Chrapusta
  • Department of Experimental Pharmacology, Polish Academy of Sciences Medical Research Center, Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Małgorzata Lehner / Aleksandra Wisłowska
  • Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bohdan T. Woronowicz
  • Department of Substance Dependence Prevention and Treatment, Institute of Psychiatry and Neurology, Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marta Bogulas
  • Department of Substance Dependence Prevention and Treatment, Institute of Psychiatry and Neurology, Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jolanta Charewicz
  • Department of Substance Dependence Prevention and Treatment, Institute of Psychiatry and Neurology, Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Cezary Markuszewski
  • Department of Substance Dependence Prevention and Treatment, Institute of Psychiatry and Neurology, Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Adam Płaźnik
  • Department of Neurochemistry, Institute of Psychiatry and Neurology, Warsaw, Poland and Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2006-12-13 | DOI: https://doi.org/10.1515/CCLM.2006.263

Abstract

Background: Most of the commonly used markers of chronic alcohol abuse reflect alcohol hepatotoxicity; however, such abuse is deleterious to the kidneys as well. Combined use of serum markers of liver origin and urinary markers of kidney origin may be of diagnostic advantage.

Methods: The study was performed in 73 male alcoholics undergoing detoxification and 36 male alcoholics who had maintained abstinence for ≥6weeks. Factor analysis, discriminant analysis and receiver operating characteristic (ROC) analysis were used to assess the discriminative power of two urinary markers of alcohol nephrotoxicity, namely β-N-acetylhexosaminidase (Hex, EC 3.2.1.52) and alanine aminopeptidase (EC 3.4.11.2), and of three serum markers of alcohol hepatotoxicity, namely aspartate aminotransferase (EC 2.6.1.1), alanine aminotransferase (EC 2.6.1.2) and γ-glutamyltransferase (GGT, EC 2.3.2.2), and of their quantitative combinations.

Results: The discriminative power of the urinary markers matched that of the serum markers. Hex and GGT appeared to be the best for discriminating the study groups. Their combination given by the equation G&H=0.62×ln(GGT)+0.72×ln(Hex) showed excellent discriminative ability (ROC area under the curve 0.92) that was significantly higher than that of any single marker in this report, indicating superior diagnostic accuracy of the compound marker.

Conclusions: Kidney-derived urinary markers, particularly Hex, can complement or replace, if necessary, serum markers of chronic alcohol abuse that relate to alcohol hepatotoxicity. The compound marker proposed seems a promising tool for the monitoring and perhaps detection of chronic alcohol abuse and warrants further studies.

Clin Chem Lab Med 2006;44:1446–52.

Keywords: β-N-acetylhexosaminidase; biomarker; γ-glutamyltransferase; sensitivity; serum enzyme; specificity; urinary enzyme

References

  • 1.

    Alling C, Chick JD, Anton R, Mayfield RD, Salaspuro M, Helander A, et al. Revealing alcohol abuse: to ask or to test? Alcohol Clin Exp Res 2005; 29:1257–63.CrossrefGoogle Scholar

  • 2.

    Conigrave KM, Davies P, Haber P, Whitfield JB. Traditional markers of excessive alcohol use. Addiction 2003; 98(Suppl 2):31–43.CrossrefGoogle Scholar

  • 3.

    Helander A. Biological markers in alcoholism. J Neural Transm 2003; 110(Suppl 66):15–22.Google Scholar

  • 4.

    Reynaud M, Schellenberg F, Loiseaux-Meinier MN, Schwan R, Maradeix B, Planche F, et al. Objective diagnosis of alcohol abuse: compared values of carbohydrate-deficient transferrin (CDT), γ-glutamyl transferase (GGT) and mean corpuscular volume (MCV). Alcohol Clin Exp Res 2000; 24:1414–19.Google Scholar

  • 5.

    Helander A, Fors M, Zakrisson B. Study of Axis-Shield new %CDT immunoassay for quantification of carbohydrate-deficient transferrin (CDT) in serum. Alcohol Alcohol 2001; 36:406–12.CrossrefGoogle Scholar

  • 6.

    Schwan R, Albuisson E, Malet L, Loiseaux MN, Reynaud M, Schellenberg F, et al. The use of biological laboratory markers in diagnosis of alcohol misuse: an evidence-based approach. Drug Alcohol Depend 2004; 74:273–9.CrossrefGoogle Scholar

  • 7.

    Godart B, Mennetrey L, Schellenberg F, Pages JC, Bacq Y. Carbohydrate-deficient transferrin and γ-glutamyl transpeptidase in the evaluation of alcohol consumption. A five-year retrospective study of 633 outpatients in a single center. Gastroenterol Clin Biol 2005; 29:113–6.CrossrefGoogle Scholar

  • 8.

    Koch H, Meerkerk GJ, Zaat JO, Ham MF, Scholten RJ, Assendelft WJ. Accuracy of carbohydrate-deficient transferrin in the detection of excessive alcohol consumption: a systematic review. Alcohol Alcohol 2004; 39:75–85.CrossrefGoogle Scholar

  • 9.

    Salaspuro M. Carbohydrate-deficient transferrin as compared to other markers of alcoholism: a systematic review. Alcohol 1999; 19:261–71.CrossrefGoogle Scholar

  • 10.

    Hock B, Schwarz M, Domke I, Grunert VP, Wuertemberger M, Schiemann U, et al. Validity of carbohydrate-deficient transferrin (%CDT), γ-glutamyltransferase and mean corpuscular erythrocyte volume (MCV) as biomarkers for chronic alcohol abuse: a study in patients with alcohol dependence and liver disorders of non-alcoholic and alcoholic origin. Addiction 2005; 100:1477–86.Google Scholar

  • 11.

    Anton RF, Lieber C, Tabakoff B. Carbohydrate-deficient transferrin and γ-glutamyltransferase for the detection and monitoring of alcohol use: results from a multisite study. Alcohol Clin Exp Res 2002; 26:1215–22.Google Scholar

  • 12.

    Chen J, Conigrave KM, Macaskill P, Whitfield JB, Irving L. Combining carbohydrate-deficient transferrin and γ-glutamyltransferase to increase diagnostic accuracy for problem drinking. Alcohol Alcohol 2003; 38:574–82.CrossrefGoogle Scholar

  • 13.

    Yersin B, Nicolet JF, Dercrey H, Burnier M, van Melle G, Pecoud A. Screening for excessive alcohol drinking. Comparative value of carbohydrate-deficient transferrin, γ-glutamyltransferase, and mean corpuscular volume. Arch Int Med 1995; 155:1907–11.CrossrefGoogle Scholar

  • 14.

    Conigrave KM, Degenhardt LJ, Whitfield JB, Saunders JB, Helander A, Tabakoff B. CDT, GGT, and AST as markers of alcohol use: The WHO/ISBRA collaborative project. Alcohol Clin Exp Res 2002; 26:332–9.CrossrefGoogle Scholar

  • 15.

    Chan AW. Biochemical markers for alcoholism. In: Windle M, Searles JS, editors. Children of alcoholics: critical perspectives. New York: Guilford Press, 1990:39–71.Google Scholar

  • 16.

    Harasymiw J, Seaberg J, Bean P. Detection of alcohol misuse using a routine test panel: the early detection of alcohol consumption (EDAC) test. Alcohol Alcohol 2004; 39:329–35.CrossrefGoogle Scholar

  • 17.

    Sillanaukee P, Massot N, Jousilahti P, Vartiainen E, Poikolainen K, Olsson U, et al. Enhanced clinical utility of γ-CDT in a general population. Alcohol Clin Exp Res 2000; 24:1202–6.Google Scholar

  • 18.

    Sillanaukee P, Olsson U. Improved diagnostic classification of alcohol abusers by combining carbohydrate-deficient transferrin and γ-glutamyltransferase. Clin Chem 2001; 47:681–5.Google Scholar

  • 19.

    Hultberg B, Isaaksson A, Tiderström G. β-Hexosaminidase, leucine aminopeptidase, hepatic enzymes and bilirubin in serum of chronic alcoholics with acute ethanol intoxication. Clin Chim Acta 1980; 105:317–23.CrossrefGoogle Scholar

  • 20.

    Kärkkäinen P, Jokelainen K, Roine R, Suokas A, Salaspuro M. The effects of moderate drinking and abstinence on serum and urinary β-hexosaminidase levels. Drug Alcohol Depend 1990; 25:35–8.CrossrefGoogle Scholar

  • 21.

    Taracha E, Habrat B, Chmielewska K, Baran H, Szukalski B. The activity of β-hexosaminidase (uHex) and γ-glutamyltransferase (uGGT) in urine as non-invasive markers of chronic alcohol abuse. II. Opiate-dependent subjects receiving methadone substitution. World J Biol Psychiatry 2002; 3:44–9.CrossrefGoogle Scholar

  • 22.

    Taracha E, Habrat B, Woźniak P, Walkowiak J, Szukalski B. The activity of β-hexosaminidase (uHex) and γ-glutamyltransferase (uGGT) in urine as non-invasive markers of alcohol abuse. I. Alcohol-dependent subjects. World J Biol Psychiatry 2001; 2:184–9.CrossrefGoogle Scholar

  • 23.

    Kärkkäinen P, Salaspuro M. β-Hexosaminidase in the detection of alcoholism and heavy drinking. Alcohol Alcohol 1991; 26(Suppl 1):459–64.Google Scholar

  • 24.

    Taracha E, Habrat B, Lehner M, Wisłowska A, Woronowicz BT, Bogulas M, et al. Alanine aminopeptidase (AAP) activity in urine: a new marker of chronic alcohol abuse? Alcohol Clin Exp Res 2004; 28:729–35.CrossrefGoogle Scholar

  • 25.

    World Health Organization. The ICD-10 classification of mental and behavioural disorders: criteria for research. Geneva: WHO, 1993.Google Scholar

  • 26.

    Maruhn D. Rapid colorimetric assay of β-galactosidase and N-acetyl-β-glucosaminidase in human urine. Clin Chim Acta 1976; 73:453–61.CrossrefGoogle Scholar

  • 27.

    Jung K, Scholz D. An optimized assay of alanine aminopeptidase activity in urine. Clin Chem 1980; 26:1251–4.Google Scholar

  • 28.

    Wensing G, Neumann U, Ohnhaus EE, Heidemann HT. Effect of antipyrine and phenobarbital on renal γ-glutamyltransferase excretion in human urine. Clin Pharmacol Ther 1990; 48:575–81.CrossrefGoogle Scholar

  • 29.

    Mattenheimer H, Maruhn D. Preanalytical treatment of urine. In: Jung K, Mattenheimer H, Burchardt U, editors. Urinary enzymes in clinical and experimental medicine. Berlin: Springer Verlag, 1992:89–95.Google Scholar

  • 30.

    Matteucci E, Giampietro O. To store urinary enzymes: how and how long? Kidney Int 1994; 46(Suppl 47):58–9.Google Scholar

  • 31.

    Kairisto V, Poola A. Software for illustrative presentation of basic clinical characteristics of laboratory tests – Graph ROC for Windows. Scand J Clin Lab Invest 1995; 55(Suppl 222):43–60.CrossrefGoogle Scholar

  • 32.

    Grzybowski M, Younger JG. Statistical methodology: III. receiver operating characteristic curves. Acad Emerg Med 1997; 4:818–26.CrossrefGoogle Scholar

  • 33.

    Martinez LD, Barón AE, Helander A, Conigrave KM, Tabakoff B. The effect of total body water on the relationship between alcohol consumption and carbohydrate-deficient transferrin. Alcohol Clin Exp Res 2002; 26:1097–104.CrossrefGoogle Scholar

  • 34.

    Sillanaukee P, Strid N, Allen JP, Litten RZ. Possible reasons why heavy drinking increases carbohydrate-deficient transferrin. Alcohol Clin Exp Res 2001; 25:34–40.CrossrefGoogle Scholar

  • 35.

    Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 1993; 39:561–77.Google Scholar

  • 36.

    Walter H, Hertling I, Benda N, Konig B, Ramskogler K, Riegler A, et al. Sensitivity and specificity of carbohydrate-deficient transferrin in drinking experiments and different patients. Alcohol 2001; 25:189–94.CrossrefGoogle Scholar

  • 37.

    Brenner H, Gefeller O. Variation of sensitivity, specificity, likelihood ratios and predictive values with disease prevalence. Stat Med 1997; 16:981–91.CrossrefGoogle Scholar

  • 38.

    Martines D, Morris AI, Gilmore IT, Ansari MA, Patel A, Quayle JA, et al. Urinary enzyme output during detoxification of chronic alcoholic patients. Alcohol Alcohol 1989; 24:113–20.CrossrefGoogle Scholar

  • 39.

    Anttila P, Järvi K, Latvala J, Romppanen J, Punnonen K, Niemelä O. Biomarkers of alcohol consumption in patients classified according to the degree of liver disease severity. Scand J Clin Lab Invest 2005; 65:141–51.CrossrefGoogle Scholar

  • 40.

    Schellenberg F, Schwan R, Mennetrey L, Loiseaux MN, Pages JC, Reynaud M. Dose-effect relation between daily ethanol intake in the range 0–70 grams and %CDT value: validation of a cut-off value. Alcohol Alcohol 2005; 40:531–4.Google Scholar

  • 41.

    Hermida J, Casal JA, Tutor JC. Effect of partial proteolysis on the activation energy of β-N-acetylhexosaminidase precursor and mature forms. Clin Chem Lab Med 2003; 41:302–5.CrossrefGoogle Scholar

About the article

Corresponding author: Ewa Taracha, PhD, Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego St, 02-957 Warsaw, Poland Phone: +48-22-458-26-19, Fax: +48-22-321-34-71,


Received: 2006-07-27

Accepted: 2006-09-11

Published Online: 2006-12-13

Published in Print: 2006-12-01


Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), Volume 44, Issue 12, Pages 1446–1452, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/CCLM.2006.263.

Export Citation

©2006 by Walter de Gruyter Berlin New York.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Kensuke Hamamura, Mitsuaki Yanagida, Hitoshi Ishikawa, Michio Banzai, Hiroshi Yoshitake, Daisuke Nonaka, Kenji Tanaka, Mayumi Sakuraba, Yasuka Miyakuni, Kenji Takamori, Michio Nojima, Koyo Yoshida, Hiroshi Fujiwara, Satoru Takeda, and Yoshihiko Araki
Annals of Clinical Biochemistry: International Journal of Laboratory Medicine, 2018, Volume 55, Number 2, Page 287
[2]
Napoleon Waszkiewicz, Sylwia Chojnowska, Anna Zalewska, Krzysztof Zwierz, Agata Szulc, and Sławomir Dariusz Szajda
Drug and Alcohol Dependence, 2013, Volume 129, Number 1-2, Page 33
[3]
Georgene Hergenroeder, John B. Redell, Anthony N. Moore, William P. Dubinsky, Robert T. Funk, John Crommett, Guy L. Clifton, Robert Levine, Alex Valadka, and Pramod K. Dash
Journal of Neurotrauma, 2008, Volume 25, Number 2, Page 79
[4]
Birgit Holdt, Eva Peters, Heinz-Rudolf Nagel, and Michael Steiner
Clinical Chemistry and Laboratory Medicine, 2008, Volume 46, Number 4
[5]
Adrian Reuben
Current Opinion in Gastroenterology, 2007, Volume 23, Number 3, Page 283
[6]
Francheska Perepletchikova, John H. Krystal, and Joan Kaufman
Journal of Child Psychology and Psychiatry, 2008
[7]
N. Waszkiewicz, S. D. Szajda, A. Jankowska, A. Kepka, J. Dobryniewski, A. Szulc, and K. Zwierz
Alcohol and Alcoholism, 2008, Volume 43, Number 4, Page 446

Comments (0)

Please log in or register to comment.
Log in