Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter / Tate, Jillian R.

12 Issues per year


IMPACT FACTOR 2016: 3.432

CiteScore 2016: 2.21

SCImago Journal Rank (SJR) 2016: 1.000
Source Normalized Impact per Paper (SNIP) 2016: 1.112

Online
ISSN
1437-4331
See all formats and pricing
More options …
Volume 44, Issue 2 (Feb 2006)

Issues

Allergy testing: the role of recombinant allergens

Nadine Mothes
  • Zentrum für Physiologie und Pathophysiologie, Institut für Pathophysiologie, Abteilung Immunpathologie, Labordiagnostik, Medizinische Universität Wien, Vienna, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rudolf Valenta
  • Zentrum für Physiologie und Pathophysiologie, Institut für Pathophysiologie, Abteilung Immunpathologie, Labordiagnostik, Medizinische Universität Wien, Vienna, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Susanne Spitzauer
  • Institut für Medizinische und Chemische Labordiagnostik, Medizinische Universität Wien, Vienna, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2006-02-13 | DOI: https://doi.org/10.1515/CCLM.2006.024

Abstract

Currently, diagnosis of type I allergy is performed using crude allergen extracts, which allow the identification of the allergen-containing source responsible for type I allergic symptoms (e.g., allergic rhino-conjunctivitis, asthma) but not the disease-eliciting molecules. With the introduction of recombinant allergens produced by molecular biology techniques, a large panel of allergenic molecules has become available. The application of these recombinant allergens for in vitro tests has led to new forms of component-resolved diagnosis (CRD) and allows the establishment of a patient's individual reactivity profile. The increasing number of recombinant allergens characterized during the last decade has allowed the development of chip-based allergy tests for simultaneous detection of up to 5000 different allergens and epitopes. The introduction of these recombinant allergen-based tests into clinical practice improves the selection of patients for traditional specific immunotherapy and allows monitoring of the immunological efficacy of specific immunotherapy by measuring allergen-specific IgG antibodies. Besides their diagnostic application, recombinant allergens and hypoallergenic derivatives thereof have also been used as vaccines in clinical trials, and recent results have shown their usefulness for the treatment of type I allergy.

Keywords: component-resolved diagnosis (CRD); cross-sensitization; hypoallergenic derivatives; microarrayed allergens; recombinant allergens; specific immunotherapy; type I allergy

References

  • 1.

    Casolaro S, Georas SN, Song Z, Ono SJ. Biology and genetics of atopic disease. Curr Opin Immunol 1996; 8:796–803.CrossrefGoogle Scholar

  • 2.

    Kay AB. Allergy and allergic diseases. Oxford: Blackwell Science, 1997.Google Scholar

  • 3.

    Wills-Karp M, Santeliz J, Karp CL. The germless theory of allergic disease: revisiting the hygiene hypothesis. Nat Rev Immunol 2001; 1:69–75.CrossrefGoogle Scholar

  • 4.

    Segal DM, Taurog JD, Metzger H. Dimeric immunoglobulin E serves as a unit signal for mast cell degranulation. Proc Natl Acad Sci USA 1977; 74:2993–7.CrossrefGoogle Scholar

  • 5.

    van der Veen MJ, Mulder M, Witteman AM, van Ree R, Aalberse RC, Jansen HM, et al. False-positive skin prick test responses to commercially available dog dander extracts caused by contamination with house dust mite (Dermatophagoides pteronyssinus) allergens. J Allergy Clin Immunol 1996; 98:1028–32.Google Scholar

  • 6.

    Valenta R, Kraft D. Recombinant allergens for diagnosis and therapy of allergic diseases. Curr Opin Immunol 1995; 7:751–6.CrossrefGoogle Scholar

  • 7.

    Valenta R, Duchene M, Vrtala S, Birkner T, Ebner C, Hirschwehr R, et al. Recombinant allergens for immunoblot diagnosis of tree-pollen allergy. J Allergy Clin Immunol 1991; 88:889–94.CrossrefGoogle Scholar

  • 8.

    Valenta R, Vrtala S, Ebner C, Kraft D, Scheiner O. Diagnosis of grass pollen allergy with recombinant timothy grass (Phleum pratense) pollen allergens. Int Arch Allergy Immunol 1992; 97:287–94.CrossrefGoogle Scholar

  • 9.

    Ebner C, Szepfalusi Z, Ferreira F, Jilek A, Valenta R, Parronchi P, et al. Identification of multiple T cell epitopes on Bet v 1; the major birch pollen allergen, using specific T cell clones and overlapping peptides. J Immunol 1993; 150:1047–54.Google Scholar

  • 10.

    Valenta R, Sperr WR, Ferreira F, Valent P, Sillaber C, Tejkl M, et al. Induction of specific histamine release from basophils with purified natural and recombinant birch pollen allergens. J Allergy Clin Immunol 1993; 91:88–97.CrossrefGoogle Scholar

  • 11.

    Sehon AH, Mohapatra SS. Induction of IgE antibodies in mice with recombinant grass pollen allergens. J Allergy Clin Immunol 1993; 91:88–97.Google Scholar

  • 12.

    Ferreira F, Mayer P, Sperr WR, Valent P, Seiberler S, Ebner C, et al. Induction of IgE antibodies with predefined specificity in rhesus monkeys with recombinant birch pollen allergens, Bet v 1 and Bet v 2. J Allergy Clin Immunol 1996; 97:95–103.CrossrefGoogle Scholar

  • 13.

    Vrtala S, Mayer P, Ferreira F, Susani M, Sehon AH, Kraft, et al. Induction of IgE antibodies in mice and rhesus monkeys with recombinant birch pollen allergens: different allergenicity of Bet v 1 and Bet v 2. J Allergy Clin Immunol 1996; 98:913–21.CrossrefGoogle Scholar

  • 14.

    Moser M, Crameri R, Brust E, Suter M, Mentz G. Diagnostic value of recombinant Aspergillus fumigatus allergen I/a for skin testing and serology. J Allergy Clin Immunol 1994; 93:1–11.CrossrefGoogle Scholar

  • 15.

    Müller UR, Dudler T, Schneider T, Crameri R, Fischer H, Skrbic D, et al. Type I skin reactivity to native and recombinant phospholipase A2 from honeybee venom is similar. J Allergy Clin Immunol 1995; 96:395–402.CrossrefGoogle Scholar

  • 16.

    Menz G, Dolecek C, Schönheit-Kenn U, Ferreira F, Moser M, Schneider T, et al. Serological and skin-test diagnosis of birch pollen allergy with recombinant Bet v 1, the major birch pollen allergen. Clin Exp Allergy 1996; 26:50–60.CrossrefGoogle Scholar

  • 17.

    Pauli G, Oster JP, Deviller P, Heiss S, Bessot JC, Susani M, et al. Skin testing with recombinant allergens rBet v 1 and birch profilin, rBet v 2: diagnostic value for birch pollen and associated allergies. J Allergy Clin Immunol 1996; 97:1100–9.CrossrefGoogle Scholar

  • 18.

    Lynch NR, Thomas WR, Chua Y, Garcia N, Diprisco MC, Lopez R. In vivo biological activity of recombinant Der p 2 allergen of house-dust mite. Int Arch Allergy Immunol 1994; 105:70–4.CrossrefGoogle Scholar

  • 19.

    Sidoli A, Tamborini E, Giuntini I, Levi S, Volonte G, Paini C, et al. Cloning, expression and immunological characterization of recombinant Lolium perenne allergen Lol p II. J Biol Chem 1993; 268:21819–25.Google Scholar

  • 20.

    Valenta R, Lidholm J, Niederberger V, Hayek B, Kraft D, Grönlund H. The recombinant allergen-based concept of component-resolved diagnostics and immunotherapy (CRD and CRIT). Clin Exp Allergy 1999; 29:896–904.CrossrefGoogle Scholar

  • 21.

    Hiller R, Laffer S, Harwanegg C, Huber M, Schmidt WM, Twardosz A, et al. Microarrayed allergen molecules: diagnostic gatekeepers for allergy treatment. FASEB J 2002; 16:414–6.Google Scholar

  • 22.

    Harwanegg C, Laffer S, Hiller R, Mueller MW, Kraft D, Spitzauer S, et al. Microarrayed recombinant allergens for diagnosis of allergy. Clin Exp Allergy 2003; 33:7–13.CrossrefGoogle Scholar

  • 23.

    Suck R, Nandy A, Weber B, Stock M, Fiebig H, Cromwell O. Rapid method for arrayed investigation of IgE-reactivity profiles using natural and recombinant allergens. Allergy 2002; 57:821–4.CrossrefGoogle Scholar

  • 24.

    Deinhofer K, Sevcik H, Balic N, Harwanegg C, Hiller R, Rumpold H, et al. Microarrayed allergens for IgE profiling. Methods 2004; 32:249–54.CrossrefGoogle Scholar

  • 25.

    Ball T, Sperr WR, Valent P, Lidholm J, Spitzauer S, Ebner C, et al. Induction of antibody responses to new B cell epitopes indicates vaccination character of allergen immunotherapy. Eur J Immunol 1999; 29:2026–36.CrossrefGoogle Scholar

  • 26.

    Mothes N, Heinzkill M, Drachenberg KJ, Sperr WR, Krauth MT, Majlesi Y, et al. Allergen-specific immunotherapy with a monophosphoryl lipid A-adjuvanted vaccine: reduced seasonally boosted immunoglobulin E production and inhibition of basophil histamine release by therapy-induced blocking antibodies. Clin Exp Allergy 2003; 33:1198–208.CrossrefGoogle Scholar

  • 27.

    van Neerven RJ, Wikborg T, Lund G, Jacobsen B, Brinch-Nielsen A, Arnved J, et al. Blocking antibodies induced by specific allergy vaccination prevent the activation of CD4+ T cells by inhibiting serum-IgE-facilitated allergen presentation. J Immunol 1999; 163:2944–52.Google Scholar

  • 28.

    Flicker S, Valenta R. Renaissance of the blocking antibody concept in type I allergy. Int Arch Allergy Immunol 2003; 132:13–24.Google Scholar

  • 29.

    Nouri-Aria KT, Wachholz PA, Francis JN, Jacobson MR, Walker SM, Wilcock LK, et al. Grass pollen immunotherapy induces mucosal and peripheral IL-10 responses and blocking IgG activity. J Immunol 2004; 172:3252–9.Google Scholar

  • 30.

    Wachholz PA, Soni NK, Till SJ, Durham SR. Inhibition of allergen-IgE binding to B cells by IgG antibodies after grass pollen immunotherapy. J Allergy Clin Immunol 2003; 112:915–22.CrossrefGoogle Scholar

  • 31.

    Wachholz PA, Durham SR. Mechanisms of immunotherapy: IgG revisited. Curr Opin Allergy Clin Immunol 2004; 4:313–8.CrossrefGoogle Scholar

  • 32.

    Niederberger V, Horak F, Vrtala S, Spitzauer S, Krauth MT, Valent P, et al. Vaccination with genetically engineered allergens prevents progression of allergic disease. Proc Natl Acad Sci USA 2004; 101:14677–82.CrossrefGoogle Scholar

  • 33.

    Reisinger J, Horak F, Pauli G, van Hage-Hamsten M, Cromwell O, König F, et al. Allergen-specific nasal IgG antibodies induced by vaccination with genetically modified allergens are associated with reduced nasal allergen sensitivity. J Allergy Clin Immunol 2005; 116:347–54.CrossrefGoogle Scholar

  • 34.

    Marsh DG, Goodfriend L, King TP, Lowenstein H, Platts-Mills TA. Allergen nomenclature. Bull World Health Organ 1986; 64:767–74.Google Scholar

  • 35.

    Pauli G. Evolution in the understanding of cross-reactivities of respiratory allergens: the role of recombinant allergens. Int Arch Allergy Immunol 2000; 123:183–95.CrossrefGoogle Scholar

  • 36.

    Valenta R, Duchene M, Ebner C, Valent P, Sillaber C, Deviller P, et al. Profilins constitute a novel family of functional plant pan-allergens. J Exp Med 1992; 175:377–85.Google Scholar

  • 37.

    Vallier P, DeChamp C, Valenta R, Vial O, Deviller P. Purification and characterization of an allergen from celery immunochemically related to an allergen present in several other plant species. Identification as a profilin. Clin Exp Allergy 1992; 22:774–82.CrossrefGoogle Scholar

  • 38.

    van Ree R, Voitenko V, van Leeuwen WA, Aalberse RC. Profilin is a cross-reactive allergen in pollen and vegetable foods. Int Arch Allergy Immunol 1992; 98:97–104.Google Scholar

  • 39.

    Moverare R, Westritschnig K, Svensson M, Hayek B, Bende M, Pauli G, et al. Different IgE reactivity profiles in birch pollen-sensitive patients from six European populations revealed by recombinant allergens: an imprint of local sensitization. Int Arch Allergy Immunol 2002; 128:325–35.CrossrefGoogle Scholar

  • 40.

    Moverare R, Elfman L, Vesterinen E, Metso T, Haahtela T. Development of new IgE specificities to allergenic components in birch pollen extract during specific immunotherapy studied with immunoblotting and the Pharmacia CAP System. Allergy 2002; 57:423–30.CrossrefGoogle Scholar

  • 41.

    van Ree R, Antonicelli L, Akkerdaas JH, Garritani MS, Aalberse RC, Bonifazi F. Possible induction of food allergy during mite immunotherapy. Allergy 1996; 51:108–13.Google Scholar

  • 42.

    Twardosz A, Hayek B, Seiberler S, Vangelista L, Elfman L, Gronlund H, et al. Molecular characterization, expression in Escherichia coli, and epitope analysis of a two EF-hand calcium-binding birch pollen allergen, Bet v 4. Biochem Biophys Res Commun 1997; 239:197–204.CrossrefGoogle Scholar

  • 43.

    Valenta R, Hayek B, Seiberler S, Bugajska-Schretter A, Niederberger V, Twardosz A, et al. Calcium-binding allergens: from plants to man. Int Arch Allergy Immunol 1998; 117:160–6.CrossrefGoogle Scholar

  • 44.

    Tinghino R, Twardosz A, Barletta B, Eleonora MR, Puggioni BD, Iacovacci P, et al. Molecular, structural, and immunologic relationships between different families of recombinant calcium-binding pollen allergens. J Allergy Clin Immunol 2002; 109:314–20.CrossrefGoogle Scholar

  • 45.

    Verdino P, Westritschnig K, Valenta R, Keller W. The cross-reactive calcium-binding pollen allergen, Phl p 7, reveals a novel dimer assembly. EMBO J 2002; 21:5007–16.CrossrefGoogle Scholar

  • 46.

    Verdino P, Westritschnig K, Valenta R, Keller W. Three-dimensional structure of the panallergen Phl p 7. Int Arch Allergy Immunol 2003; 130:10–1.Google Scholar

  • 47.

    Andersson K, Lidholm J. Characteristics and immunobiology of grass pollen allergens. Int Arch Allergy Immunol 2003; 130:87–107.CrossrefGoogle Scholar

  • 48.

    Niederberger V, Laffer S, Fröschl R, Kraft D, Rumpold H, Kapiotis M, et al. IgE antibodies to recombinant pollen allergens (Phl p 1, Phl p 2, Phl p 5, and Bet v 2) account for a high percentage of grass pollen-specific IgE. J Allergy Clin Immunol 1998; 101:258–64.CrossrefGoogle Scholar

  • 49.

    Vrtala S, Fischer S, Grote M, Vangelista L, Pastore A, Sperr WR, et al. Molecular, immunological, and structural characterization of Phl p 6, a major allergen and P-particle-associated protein from timothy grass (Phleum pratense) pollen. J Immunol 1999; 163:5489–96.Google Scholar

  • 50.

    Laffer S, Valenta R, Vrtala S, Susani M, van Ree R, Kraft D, et al. Complementary DNA cloning of the major allergen Phl p 1 from timothy grass (Phleum pratense): recombinant Phl p 1 inhibits IgE binding to group I allergens from eight different grass species. J Allergy Clin Immunol 1994; 94:689–98.CrossrefGoogle Scholar

  • 51.

    Kazemi-Shirazi L, Niederberger V, Linhart B, Lidholm J, Kraft D, Valenta R. Recombinant marker allergens: diagnostic gatekeepers for the treatment of allergy. Int Arch Allergy Immunol 2002; 127:259–68.CrossrefGoogle Scholar

  • 52.

    Pittner G, Vrtala S, Thomas WR, Weghofer M, Kundi M, Horak F, et al. Component-resolved diagnosis of house-dust mite allergy with purified natural and recombinant mite allergens. Clin Exp Allergy 2004; 34:597–603.CrossrefGoogle Scholar

  • 53.

    Gronlund , H, Bergman T, Sandstrom K, Alvellus G, Reininger R, Verdino P, et al. Formation of disulfide bonds and homodimers of the major cat allergen Fel d 1 equivalent to the natural allergen by expression in Escherichia coli. J Biol Chem 2003; 278:40144–51.Google Scholar

  • 54.

    Valenta R. Diagnostic tests based on recombinant allergens: assistance for the selection of allergy therapies. In Wall K, editor: New horizons – allergy, Vol 1. Uppsala, Sweden: Pharmacia Diagnostics AB, 2002:1–6.Google Scholar

  • 55.

    Westritschnig K, Kraft D, Valenta R. Rekombinante Allergene in der Diagnose der Typ I Allergie. J Lab Med 2002; 26:120–9.Google Scholar

  • 56.

    Valenta R, Ball T, Focke M, Linhart B, Mothes N, Niederberger V, et al. Immunotherapy of allergic disease. Adv Immunol 2004; 82:105–53.CrossrefGoogle Scholar

  • 57.

    Jutel M, Pichler WJ, Skrbic D, Urwyler A, Dahinden C, Müller UR. Bee venom immunotherapy results in decrease of IL-4 and IL-5 and increase of IFN-γ secretion in specific allergen-stimulated T-cell cultures. J Immunol 1995; 154:4187–94.Google Scholar

  • 58.

    Ebner C, Siemann U, Bohle B, Wilheim M, Wiedermann U, Schenk S, et al. Immunological changes during specific immunotherapy of grass pollen allergy: reduced lymphoproliferative responses to allergen and shift from TH2 to TH1 in T-cell clones specific for Phl p 1, a major grass pollen allergen. Clin Exp Allergy 1997; 27:1007–15.CrossrefGoogle Scholar

  • 59.

    Akdis CA, Blesken T, Akdis M, Wüthrich B, Blaser K. Role of interleukin 10 in specific immunotherapy. J Clin Invest 1998; 102:98–106.CrossrefGoogle Scholar

  • 60.

    Van Ree R, Van Leeuwen WA, Dieges PH, Van Wijk RG, De Jong N, Brewczyski PZ, et al. Measurement of IgE antibodies against purified grass pollen allergens (Lol p 1, 2, 3 and 5) during immunotherapy. Clin Exp Allergy 1997; 27:68–74.CrossrefGoogle Scholar

  • 61.

    Bousquet J, Lockey R, Malling HJ and the WHO panel members. Allergen immunotherapy: therapeutic vaccines for allergic diseases: a WHO position paper. J Allergy Clin Immunol 1998; 102:558–62.CrossrefGoogle Scholar

  • 62.

    Valenta R. The future of antigen-specific immunotherapy of allergy. Nat Rev Immunol 2002; 2:446–53.Google Scholar

  • 63.

    Valenta R, Kraft D. Recombinant allergen molecules: tools to study effector cell activation. Immunol Rev 2001; 179:119–27.Google Scholar

  • 64.

    Vrtala S, Hirtenlehner K, Vangelista L, Pastore A, Eichler HG, Sperr WR, et al. Conversion of the major birch pollen allergen, Bet v 1, into two nonanaphylactic T cell epitope-containing fragments: candidates for a novel form of specific immunotherapy. J Clin Invest 1997; 99:1673–81.CrossrefGoogle Scholar

  • 65.

    Ball T, Fuchs T, Sperr WR, Valent P, Vangelista L, Kraft D, et al. B cell epitopes of the major timothy grass pollen allergen, phl p 1, revealed by gene fragmentation as candidates for immunotherapy. FASEB J 1999; 13:1277–90.Google Scholar

  • 66.

    Valenta R, Vrtala S, Focke-Tejkl M, Bugalska-Schretter A, Ball T, Twardosz A, et al. Genetically engineered and synthetic allergen dervatives: candidates for vaccination against type l allergy. Biol Chem 1999; 380:815–24.Google Scholar

  • 67.

    Bhalla PL, Swoboda I, Singh MB. Reduction in allergenicity of grass pollen by genetic engineering. Int Arch Allergy Immunol 2001; 124:51–4.Google Scholar

  • 68.

    Vrtala S, Hirtenlehner K, Vangelista L, Pastore A, Eichler HG, Sperr WR, et al. Division of the major birch pollen allergen, Bet v 1, into two non-anaphylactic fragments. Int Arch Allergy Immunol 1997; 113:246–8.CrossrefGoogle Scholar

  • 69.

    Lowenstein H, Spacholt SH, Klysner SS, Ipsen H, Larsen JN. The significance of isoallergenic variations in present and future specific immunotherapy. Int Arch Allergy Immunol 1995; 107:285–9.CrossrefGoogle Scholar

  • 70.

    Breiteneder H, Ferreira F, Hoffmann-Sommergruber K, Ebner C, Breitenbach M, Rumpold H, et al. Four recombinant isoforms of Cor a I, the major allergen of hazel pollen, show different IgE-binding properties. Eur J Biochem 1993; 212:355–62.Google Scholar

  • 71.

    Ferreira F, Hirtenlehner K, Jilek A, Godnik-Cvar J, Breiteneder H, Grimm R, et al. Dissection of immunoglobulin E and T lymphocyte reactivity of isoforms of the major birch pollen allergen Bet v 1: potential use of hypoallergenic isoforms for immunotherapy. J Exp Med 1996; 183:599–609.Google Scholar

  • 72.

    Vrtala S, Hirtenlehner K, Susani M, Akdis M, Kussebi F, Akdis CA, et al. Genetic engineering of a hypoallergenic trimer of the major birch pollen allergen Bet v 1. FASEB J 2001; 15:2045–7.Google Scholar

  • 73.

    Linhart B, Jahn-Schmid B, Verdino P, Keller W, Ebner C, Kraft D, et al. Combination vaccines for the treatment of grass pollen allergy consisting of genetically engineered hybrid molecules with increased immunogenicity. FASEB J 2002; 16:1301–3.Google Scholar

  • 74.

    Niederberger V, Stubner P, Spitzauer S, Kraft D, Valenta R, Ehrenberger K, et al. Skin test results but not serology reflect immediate type respiratory sensitivity: a study performed with recombinant allergen molecules. J Invest Dermatol 2001; 117:848–51.CrossrefGoogle Scholar

  • 75.

    Heiss S, Mahler V, Steiner R, Spitzauer S, Schweiger C, Kraft D, et al. Component-resolved diagnosis (CRD) of type I allergy with recombinant grass and tree pollen allergens by skin testing. J Invest Dermatol 1999; 113:830–7.CrossrefGoogle Scholar

  • 76.

    Tresch S, Holzmann D, Baumann S, Blaser K, Wuthrich B, Crameri R, et al. In vitro and in vivo allergenicity of recombinant Bet v 1 compared to the reactivity of natural birch pollen extract. Clin Exp Allergy 2003; 33:1153–8.CrossrefGoogle Scholar

  • 77.

    Arquint O, Helbling A, Crameri R, Ferreira F, Breitenbach M, Pichler WJ. Reduced in vivo allergenicity of Bet v 1d isoform, a natural component of birch pollen. J Allergy Clin Immunol 1999; 104:1239–43.CrossrefGoogle Scholar

  • 78.

    van Hage-Hamsten M, Kronqvist M, Zetterström O, Johansson E, Niederberger V, Vrtala S, et al. Skin test evaluation of genetically engineered hypoallergenic derivatives of the major birch pollen allergen, Bet v 1. Results obtained with a mix of two recombinant Bet v 1 fragments and rBet v 1 trimer in a Swedish population before the birch pollen season. J Allergy Clin Immunol 1999; 104:969–77.Google Scholar

  • 79.

    Pauli G, Purohit A, Oster JP, de Blay F, Vrtala S, Niederberger V, et al. Comparison of genetically engineered hypoallergenic rBet v 1 derivatives by skin prick and intradermal testing: results obtained in a French population. Clin Exp Allergy 2000; 30:1076–84.CrossrefGoogle Scholar

  • 80.

    Nopp A, Halden G, Lundhal J, Johansson E, Vrtala S, Valenta R, et al. Comparison of inflammatory responses to genetically engineered hypoallergenic derivatives of the major birch pollen allergen, Bet v 1, induces less eosinophilic activity in skin chamber fluids collected from birch pollen allergic patients than rBet v 1 wild type. J Allergy Clin Immunol 2000; 106:101–9.CrossrefGoogle Scholar

  • 81.

    Kauppinen J, Zeiler T, Rautiainen J, Rytkonen-Nissinen M, Taivainen A, Mantyjarvi R, et al. Mutant derivatives of the main respiratory allergen of cow are less allergenic than the intact molecule. Clin Exp Allergy 1999; 29:989–96.CrossrefGoogle Scholar

  • 82.

    Kronqvist M, Johansson E, Whitley P, Olsson S, Gafvelin G, Scheynius A, et al. A hypoallergenic derivative of the major allergen of the dust mite Lepidoglyphus destructor, Lep d 2.6Cys, induces less IgE reactivity and cellular response in the skin than recombinant Lep d 2. Int Arch Allergy Immunol 2001; 126:41–9.Google Scholar

  • 83.

    Bonura A, Amoroso S, Locorotondo G, Di Felice G, Tinghino R, Geraci D, et al. Hypoallergenic variants of the Parietaria judaica major allergen Par j 1: a member of the non-specific lipid transfer protein plant family. Int Arch Allergy Immunol 2001; 126:32–40.CrossrefGoogle Scholar

About the article

Corresponding author: Prof. Dr. Susanne Spitzauer, Institut für Medizinische und Chemische Labordiagnostik, AKH, Medizinische Universität Wien, Währinger Gürtel 18-20, 1090 Vienna, Austria Phone: +43-1-40400-5324, Fax: +43-1-40400-5389,


Published Online: 2006-02-13

Published in Print: 2006-02-01


Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/CCLM.2006.024.

Export Citation

©2006 by Walter de Gruyter Berlin New York. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Scott Dexter Boyd, Ramona Amy Hoh, Kari Christine Nadeau, and Stephen Joseph Galli
Current Opinion in Immunology, 2017, Volume 48, Page 82
[2]
Yubao Cui, Ying Zhou, Guifang Ma, Li Yang, Yungang Wang, and Weihong Shi
Brazilian Journal of Medical and Biological Research, 2012, Volume 45, Number 8, Page 746
[3]
Cui Yu-bao, Ying Zhou, Shi Weihong, Ma Guifang, Li Yang, and Wang Yungang
Anais da Academia Brasileira de Ciências, 2010, Volume 82, Number 4, Page 941
[4]
Stephen Joseph Galli
Journal of Allergy and Clinical Immunology, 2016, Volume 137, Number 5, Page 1289
[5]
Joo Hyun Jung, Il Gyu Kang, and Seon Tae Kim
Clinical and Experimental Otorhinolaryngology, 2015, Volume 8, Number 4, Page 385
[6]
M.F. Gabriel, I. Postigo, A. Gutiérrez-Rodríguez, E. Suñén, J.A. Guisantes, J. Fernández, C.T. Tomaz, and J. Martínez
Immunobiology, 2016, Volume 221, Number 2, Page 153
[7]
A.L. Van Gasse, E.A. Mangodt, M. Faber, V. Sabato, C.H. Bridts, and D.G. Ebo
Clinica Chimica Acta, 2015, Volume 444, Page 54
[8]
Marta F. Gabriel, Idoia Postigo, Antonio Gutiérrez-Rodríguez, Ester Suñén, Jorge Guisantes, Cândida T. Tomaz, and Jorge Martínez
Immunobiology, 2015, Volume 220, Number 7, Page 851
[9]
A. Bonura, A. Trapani, L. Gulino, V. Longo, R. Valenta, R. Asero, and P. Colombo
Molecular Immunology, 2014, Volume 57, Number 2, Page 220
[10]
K. I. L. Röschmann, A.-M. van Kuijen, S. Luiten, M. J. Jonker, T. M. Breit, W. J. Fokkens, A. Petersen, and C. M. van Drunen
Clinical & Experimental Allergy, 2012, Volume 42, Number 10, Page 1479
[11]
C. N. Pickert, A. Lorentz, M. P. Manns, and S. C. Bischoff
Allergy, 2012, Volume 67, Number 10, Page 1308
[12]
J.F. Fontaine
Revue Française d'Allergologie et d'Immunologie Clinique, 2007, Volume 47, Number 3, Page 129
[13]
J. Bousquet, L. Heinzerling, C. Bachert, N. G. Papadopoulos, P. J. Bousquet, P. G. Burney, G. W. Canonica, K. H. Carlsen, L. Cox, T. Haahtela, K. C. Lodrup Carlsen, D. Price, B. Samolinski, F. E. R. Simons, M. Wickman, I. Annesi-Maesano, C. E. Baena-Cagnani, K. C. Bergmann, C. Bindslev-Jensen, T. B. Casale, A. Chiriac, A. A. Cruz, R. Dubakiene, S. R. Durham, W. J. Fokkens, R. Gerth-van-Wijk, O. Kalayci, M. L. Kowalski, A. Mari, J. Mullol, L. Nazamova-Baranova, R. E. O’Hehir, K. Ohta, P. Panzner, G. Passalacqua, J. Ring, B. Rogala, A. Romano, D. Ryan, P. Schmid-Grendelmeier, A. Todo-Bom, R. Valenta, S. Woehrl, O. M. Yusuf, T. Zuberbier, and P. Demoly
Allergy, 2012, Volume 67, Number 1, Page 18
[14]
Daniel Soeria-Atmadja, Annica Önell, Anita Kober, Per Matsson, Mats G. Gustafsson, and Ulf Hammerling
Journal of Allergy and Clinical Immunology, 2007, Volume 120, Number 6, Page 1433
[15]
María Teresa Lizaso, Blanca Esther García, Ana Isabel Tabar, Eva Lasa, Susana Echechipía, María José Álvarez, Marta Anda, and Belén Gómez
Annals of Allergy, Asthma & Immunology, 2011, Volume 107, Number 1, Page 35
[16]
A. Bonura, L. Gulino, A. Trapani, G. Di Felice, R. Tinghino, S. Amoroso, D. Geraci, R. Valenta, K. Westritschnig, E. Scala, A. Mari, and P. Colombo
Molecular Immunology, 2008, Volume 45, Number 9, Page 2465
[17]
Azra Dedic, Gabriele Gadermaier, Lothar Vogel, Christof Ebner, Stefan Vieths, Fátima Ferreira, and Matthias Egger
Molecular Immunology, 2009, Volume 46, Number 3, Page 416
[18]
Prem L. Bhalla and Mohan B. Singh
Trends in Biotechnology, 2008, Volume 26, Number 3, Page 153
[19]
Paul Bowyer and David W. Denning
Medical Mycology, 2007, Volume 45, Number 1, Page 17
[20]
Harald Renz, Thomas Biedermann, Albrecht Bufe, Bernadette Eberlein, Uta Jappe, Markus Ollert, Arnd Petersen, Jörg Kleine-Tebbe, Monika Raulf-Heimsoth, Joachim Saloga, Thomas Werfel, Margitta Worm, and In-vitro-Allergiediagnostik (Arbeit
LaboratoriumsMedizin, 2010, Volume 34, Number 4, Page 177
[21]
Franco Borghesan, Daniela Bernardi, and Mario Plebani
Clinical Chemical Laboratory Medicine, 2007, Volume 45, Number 3
[22]
J. Bousquet, N. Khaltaev, A. A. Cruz, J. Denburg, W. J. Fokkens, A. Togias, T. Zuberbier, C. E. Baena-Cagnani, G. W. Canonica, C. Van Weel, I. Agache, N. Aït-Khaled, C. Bachert, M. S. Blaiss, S. Bonini, L.-P. Boulet, P.-J. Bousquet, P. Camargos, K.-H. Carlsen, Y. Chen, A. Custovic, R. Dahl, P. Demoly, H. Douagui, S. R. Durham, R. Gerth Van Wijk, O. Kalayci, M. A. Kaliner, Y.-Y. Kim, M. L. Kowalski, P. Kuna, L. T. T. Le, C. Lemiere, J. Li, R. F. Lockey, S. Mavale-Manuel, E. O. Meltzer, Y. Mohammad, J. Mullol, R. Naclerio, R. E. O’Hehir, K. Ohta, S. Ouedraogo, S. Palkonen, N. Papadopoulos, G. Passalacqua, R. Pawankar, T. A. Popov, K. F. Rabe, J. Rosado-Pinto, G. K. Scadding, F. E. R. Simons, E. Toskala, E. Valovirta, P. Van Cauwenberge, D.-Y. Wang, M. Wickman, B. P. Yawn, A. Yorgancioglu, O. M. Yusuf, H. Zar, I. Annesi-Maesano, E. D. Bateman, A. Ben Kheder, D. A. Boakye, J. Bouchard, P. Burney, W. W. Busse, M. Chan-Yeung, N. H. Chavannes, A. Chuchalin, W. K. Dolen, R. Emuzyte, L. Grouse, M. Humbert, C. Jackson, S. L. Johnston, P. K. Keith, J. P. Kemp, J.-M. Klossek, D. Larenas-Linnemann, B. Lipworth, J.-L. Malo, G. D. Marshall, C. Naspitz, K. Nekam, B. Niggemann, E. Nizankowska-Mogilnicka, Y. Okamoto, M. P. Orru, P. Potter, D. Price, S. W. Stoloff, O. Vandenplas, G. Viegi, and D. Williams
Allergy, 2008, Volume 63, Page 8
[23]
Tiiu Saarne, Hans Grönlund, Inger Kull, Catarina Almqvist, Magnus Wickman, and Marianne van Hage
Pediatric Allergy and Immunology, 2010, Volume 21, Number 2p1, Page 277
[24]
A. Twardosz-Kropfmüller, M. B. Singh, V. Niederberger, F. Horak, D. Kraft, S. Spitzauer, R. Valenta, and I. Swoboda
Allergy, 2010, Volume 65, Number 3, Page 296
[25]
Adam V Wisnewski
Current Opinion in Allergy and Clinical Immunology, 2007, Volume 7, Number 2, Page 138
[26]
Haeseok Lee, Kyoung Yong Jeong, Kwang Hyun Shin, Myung-hee Yi, Darambazar Gantulaga, Chein-Soo Hong, and Tai-Soon Yong
The Korean Journal of Parasitology, 2008, Volume 46, Number 4, Page 243
[27]
J. A. Asturias, A. Ferrer, M. C. Arilla, C. Andreu, B. Madariaga, and A. Martínez
Clinical & Experimental Immunology, 2007, Volume 147, Number 3, Page 491
[28]
Melanie Albrecht, Stefano Alessandri, Amedeo Conti, Andreas Reuter, Iris Lauer, Stefan Vieths, and Gerald Reese
Molecular Nutrition & Food Research, 2008, Page NA
[29]
H. Ott, J. Baron, and H. F. Merk
Der Hautarzt, 2006, Volume 57, Number 6, Page 502

Comments (0)

Please log in or register to comment.
Log in