Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Greaves, Ronda / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter


IMPACT FACTOR 2018: 3.638

CiteScore 2018: 2.44

SCImago Journal Rank (SJR) 2018: 1.191
Source Normalized Impact per Paper (SNIP) 2018: 1.205

Online
ISSN
1437-4331
See all formats and pricing
More options …
Volume 44, Issue 4

Issues

Matrix metalloproteinases and their inhibitors in different acute stroke subtypes

Ines Vukasovic / Andrea Tesija-Kuna / Elizabeta Topic / Visnja Supanc / Vida Demarin / Marija Petrovcic
Published Online: 2011-09-21 | DOI: https://doi.org/10.1515/CCLM.2006.079

Abstract

The aim of the study was to determine serum levels of selected matrix metalloproteinases (MMPs) and their natural inhibitors (TIMPs) in the acute phase of different stroke types subdivided according to the Oxfordshire Community Stroke Project (OCSP) classification and the possibility of discriminating stroke types according to their levels. The study included 126 patients with acute stroke within the first 24h of symptom onset, and 124 healthy volunteers. The stroke group had lower MMP-2 concentrations and MMP-2/TIMP-2 ratios (p<0.001) but higher TIMP-2 (p<0.001) than controls. The level of MMP-9 and the MMP-9/TIMP-1 ratio were higher in patients with total anterior circulation infarct (TACI) than in patients with other stroke subtypes according to OCSP classification (p=0.0019, p=0.0065, respectively) or in controls (p<0.0001, p=0.0024, respectively). A negative correlation of MMP-2 levels with MMP-9 and MMP-9/TIMP-1 ratio was recorded in all stroke subtypes except for TACI. Receiver operating characteristic analysis showed similar discriminating power for MMP-9 levels and Barthel index in the differential diagnosis of TACI. High MMP-9/TIMP-1 ratio (odds ratio 3.263) was associated with TACI. Our results demonstrate that the MMP-9/TIMP-1 ratio may provide information to help in assessing stroke patients in the future as a baseline biomarker of infarct extent.

Keywords: matrix metalloproteinases; stroke; tissue inhibitor of metalloproteinases

References

  • 1.

    Fassbender K, Mossner R, Motsch L, Kischka U, Grau A, Hennerici M. Circulating selectin- and immunoglobulin-type adhesion molecules in acute ischemic stroke. Stroke 1995; 26:1361–4.CrossrefGoogle Scholar

  • 2.

    Aoki T, Sumii T, Mori T, Wang X, Lo EH. Blood-brain barrier disruption and matrix metalloproteinase-9 expression during reperfusion injury: mechanical versus embolic focal ischemia in spontaneously hypertensive rats. Stroke 2002; 33:2711–7.CrossrefGoogle Scholar

  • 3.

    Wagner S, Nagel S, Kluge B, Schwab S, Heiland S, Koziol J, et al. Topographically graded postischemic presence of metalloproteinases is inhibited by hypothermia. Brain Res 2003; 984:63–75.Google Scholar

  • 4.

    Alvarez B, Ruiz C, Chacon P, Alvarez-Sabin J, Matas M. Serum values of metalloproteinase-2 and metalloproteinase-9 as related to unstable plaque and inflammatory cells in patients with greater than 70% carotid artery stenosis. J Vasc Surg 2004; 40:469–75.CrossrefGoogle Scholar

  • 5.

    Beaudeux J-L, Giral F, Bruckert E, Foglietti M-J, Chapman J. Matrix metalloproteinases, inflammation and atherosclerosis: therapeutic perspectives. Clin Chem Lab Med 2004; 42:121–31.CrossrefGoogle Scholar

  • 6.

    Loftus IM, Naylor AR, Goodall S, Crowther M, Jones L, Bell PR, et al. Increased matrix metalloproteinase-9 activity in unstable carotid plaques: a potential role in acute plaque disruption. Stroke 2000; 31:40–7.CrossrefGoogle Scholar

  • 7.

    Rosenberg GA, Estrada EY, Dencoff JE. MMPs and TIMPs are associated with BBB opening after reperfusion in rat brain. Stroke 1998; 29:2189–95.CrossrefGoogle Scholar

  • 8.

    Sumii T, Lo EH. Involvement of matrix metalloproteinase in thrombolysis-associated hemorrhagic transformation after embolic focal ischemia in rats. Stroke 2002; 33:831–6.CrossrefGoogle Scholar

  • 9.

    Montaner J, Alvarez-Sabin J, Molina C, Angles A, Abilleira S, Arenillas J, et al. Matrix metalloproteinase expression after human cardioembolic stroke: temporal profile and relation to neurological impairment. Stroke 2001; 32:1759–66.CrossrefGoogle Scholar

  • 10.

    Bamford J, Sandercock P, Dennis M, Burn J, Warlow C. Classification and natural history of clinically identifiable subtypes of cerebral infarction. Lancet 1991; 337:1521–6.Google Scholar

  • 11.

    NSA Stroke Prevention Guidelines. A review of guidelines and a multidisciplinary consensus statement from the National Stroke Association. J Am Med Assoc 1999;281:24–31.Google Scholar

  • 12.

    Mead GE, Lewis SC, Wardlaw JM, Dennis MS, Warlow CP. How well does the Oxfordshire community stroke project classification predict the site and size of the infarct on brain imaging? J Neurol Neurosurg Psychiatry 2000; 68:558–62.CrossrefGoogle Scholar

  • 13.

    Birkedal-Hansen H. Proteolytic remodeling of extracellular matrix. Curr Opin Cell Biol 1995; 7:728–35.CrossrefGoogle Scholar

  • 14.

    Romanic AM, White RF, Arleth AJ, Ohlstein EH, Barone FC. MMP expression increases after cerebral focal ischemia in rats: inhibition of MMP-9 reduces infarct size. Stroke 1998; 29:1020–30.CrossrefGoogle Scholar

  • 15.

    Asahi M, Wang X, Mori T, Sumii T, Jung JC, Moskowitz MA, et al. Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J Neurosci 2001; 21:7724–32.Google Scholar

  • 16.

    Asahi M, Sumii T, Fini ME, Itohara S, Lo EH. Matrix metalloproteinase 2 gene knockout has no effect on acute brain injury after focal ischemia. Neuroreport 2001; 12:3003–7.Google Scholar

  • 17.

    Horstmann S, Kalb P, Koziol J, Gardner H, Wagner S. Profiles of matrix metalloproteinases, their inhibitors, and laminin in stroke patients: influence of different therapies. Stroke 2003; 34:2165–70.CrossrefGoogle Scholar

  • 18.

    Lorenzl S, De Pasquale G, Segal AZ, Beal MF. Dysregulation of the levels of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in the early phase of cerebral ischemia. Stroke 2003; 34:e37–8.CrossrefGoogle Scholar

  • 19.

    Castellanos M, Leira R, Serena J, Pumar JM, Lizasoain I, Castillo J, et al. Plasma metalloproteinase-9 concentration predicts hemorrhagic transformation in acute ischemic stroke. Stroke 2003; 34:40–6.CrossrefGoogle Scholar

  • 20.

    Clark AW, Krekoski CA, Bou SS, Chapman KR, Edwards DR. Increased gelatinase A (MMP-2) and gelatinase B (MMP-9) activities in human brain after focal ischemia. Neurosci Lett 1997; 238:53–6.Google Scholar

  • 21.

    Kuzuya M, Kanda S, Sasaki T, Tamaya-Mori N, Cheng XW, Itoh T, et al. Deficiency of gelatinase a suppresses smooth muscle cell invasion and development of experimental intimal hyperplasia. Circulation 2003; 108:1375–81.CrossrefGoogle Scholar

  • 22.

    Montaner J, Alvarez-Sabín J, Molina CA, Anglés A, Abilleira S, Arenillas J, et al. Matrix metalloproteinase (MMP-9) expression is related to hemorrhagic transformation after cardioembolic stroke. Stroke 2001; 32:2762–7.CrossrefGoogle Scholar

  • 23.

    Montaner J, Molina CA, Monasterio J, Abilleira S, Arenillas JF, Ribó M, et al. Matrix metalloproteinase-9 pretreatment level predicts intracranial hemorrhagic complications after thrombolysis in human stroke. Circulation 2003; 107:598–603.CrossrefGoogle Scholar

  • 24.

    Alvarez-Sabin J, Delgado P, Abilleira S, Molina CA, Arenillas J, Ribó M, et al. Temporal profile of matrix metalloproteinases and their inhibitors after spontaneous intracerebral hemorrhage: relationship to clinical and radiological outcome. Stroke 2004; 35:1316–22.CrossrefGoogle Scholar

  • 25.

    Van den Steen PE, Dubois B, Nelissen I, Rudd PM, Dwek RA, Opdenakker G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol 2002; 37:375–536.Google Scholar

  • 26.

    Montaner J, Rovira A, Molina CA, Arenillas JF, Ribó M, Chacon P, et al. Plasmatic level of neuroinflammatory markers predict the extent of diffusion-weighted image lesions in hyperacute stroke. J Cereb Blood Flow Metab 2003; 23:1403–7.Google Scholar

  • 27.

    Rosell A, Alvarez-Sabin J, Arenillas JF, Rovira A, Delgado P, Fernandez-Cadenas I, et al. A matrix metalloproteinase protein array reveals a strong relation between MMP-9 and MMP-13 with diffusion-weighted image lesion increase in human stroke. Stroke 2005; 36:1415–20.CrossrefGoogle Scholar

  • 28.

    Lee SR, Tsuji K, Lee SR, Lo EH. Role of matrix metalloproteinases in delayed neuronal damage after transient global cerebral ischemia. J Neurosci 2004; 24:671–8.CrossrefGoogle Scholar

  • 29.

    Avolio C, Ruggieri M, Giuliani F, Liuzzi GM, Leante R, Riccio P, et al. Serum MMP-2 and MMP-9 are elevated in different multiple sclerosis subtypes. J Neuroimmunol 2003; 136:46–53.Google Scholar

  • 30.

    McGirt MJ, Lynch JR, Blessing R, Warner DS, Friedman AH, Laskowitz DT. Serum von Willebrand factor, matrix metalloproteinase-9, and vascular endothelial growth factor levels predict the onset of cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Neurosurgery 2002; 51:1128–34 [discussion 1134–5].CrossrefGoogle Scholar

  • 31.

    Dubois B, Leary SM, Nelissen I, Opdenakker G, Giovannoni G, Thompson AJ. Serum gelatinase B/MMP-9 in primary progressive multiple sclerosis patients treated with interferon-beta-1a. J Neurol 2003; 250:1037–43.Google Scholar

  • 32.

    Correale J, de los Milagros Bassani Molinas M. Temporal variations of adhesion molecules and matrix metalloproteinases in the course of MS. J Neuroimmunol 2003; 140:198–209.CrossrefGoogle Scholar

  • 33.

    Kuyvenhoven JP, Ringers J, Verspaget HW, Lamers CB, van Hoek B. Serum matrix metalloproteinase MMP-2 and MMP-9 in the late phase of ischemia and reperfusion injury in human orthotopic liver transplantation. Transplant Proc 2003; 35:2967–9.CrossrefGoogle Scholar

  • 34.

    Sfiridaki A, Miyakis S, Tsirakis G, Alegakis A, Passam AM, Kandidaki E, et al. Systemic levels of interleukin-6 and matrix metalloproteinase-9 in patients with multiple myeloma may be useful as prognostic indexes of bone disease. Clin Chem Lab Med 2005; 43:934–8.Google Scholar

  • 35.

    Jung K, Lein M, Laube C, Lichtinghagen R. Blood specimen collection methods influence the concentration and the diagnostic validity of matrix metalloproteinase 9 in blood. Clin Chim Acta 2001; 314:241–4.Google Scholar

  • 36.

    Alby C, Ben Abdesselam O, Foglietti MJ, Beaudeux JL. Preanalytical aspects regarding the measurement of metalloproteinase-9 and tissue inhibitor or metalloproteinase-1 in blood. Clin Chim Acta 2002; 325:183–6.Google Scholar

About the article

Corresponding author: Ines Vukasovic, Clinical Institute of Chemistry, Sestre milosrdnice University Hospital, Vinogradska c. 29, 10000 Zagreb, Croatia Phone: +385-1-3787381, Fax: +385-1-3768280,


Received: 2005-10-19

Accepted: 2006-01-10

Published Online: 2011-09-21

Published in Print: 2006-04-01


Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), Volume 44, Issue 4, Pages 428–434, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/CCLM.2006.079.

Export Citation

©2006 by Walter de Gruyter Berlin New York.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
M. P. Topuzova, T. M. Alekseeva, E. B. Panina, and T. V. Vavilova
"Arterial’naya Gipertenziya" ("Arterial Hypertension"), 2018, Volume 24, Number 5, Page 521
[2]
Laura Ramiro, Alba Simats, Teresa García-Berrocoso, and Joan Montaner
Therapeutic Advances in Neurological Disorders, 2018, Volume 11, Page 175628641878934
[3]
YUAN-ZHI XU, KAI-JUN ZHAO, ZHI-GANG YANG, YU-HUI ZHANG, YONG-WEI ZHANG, BO HONG, and JIAN-MIN LIU
Molecular Medicine Reports, 2012, Volume 6, Number 6, Page 1319
[4]
Yi Chun Chen, Wei Min Ho, Yun Shien Lee, Huei Wen Chen, Chiung-Mei Chen, and Yves St-Pierre
PLOS ONE, 2015, Volume 10, Number 11, Page e0142482
[5]
Huaqiang Zhou, Zeting Qiu, Shaowei Gao, Qinchang Chen, Si Li, Wulin Tan, Xiaochen Liu, and Zhongxing Wang
International Journal of Molecular Sciences, 2016, Volume 17, Number 5, Page 776
[6]
Shufen Chen, Jens Martens-Lobenhoffer, Karin Weissenborn, Jan T Kielstein, Ralf Lichtinghagen, Milani Deb, Na Li, Anita B Tryc, Annemarie Goldbecker, Qiang Dong, Stefanie M Bode-Böger, and Hans Worthmann
Journal of Neuroinflammation, 2012, Volume 9, Number 1
[7]
Renée J. Turner and Frank R. Sharp
Frontiers in Cellular Neuroscience, 2016, Volume 10
[8]
Marcio Francisco Lehmann, Ana Paula Kallaur, Sayonara Rangel Oliveira, Daniela Frizon Alfieri, Franciele Delongui, Johnathan de Sousa Parreira, Maria Caroline Martins de Araújo, Carolina Rossato, Jéssica Tavares de Almeida, Larissa Moliterno Pelegrino, Erick Frank Bragato, Ana Lucia Cruz Fürstenberger Lehmann, Helena Kaminami Morimoto, Marcell Alysson Batisti Lozovoy, Andrea Name Colado Simão, Damácio Ramon Kaimen-Maciel, and Edna Maria Vissoci Reiche
Metabolic Brain Disease, 2015, Volume 30, Number 6, Page 1417
[9]
Benedetta Piccardi, Vanessa Palumbo, Mascia Nesi, Patrizia Nencini, Anna Maria Gori, Betti Giusti, Giovanni Pracucci, Paolina Tonelli, Eleonora Innocenti, Alice Sereni, Elena Sticchi, Danilo Toni, Paolo Bovi, Mario Guidotti, Maria Rosaria Tola, Domenico Consoli, Giuseppe Micieli, Rossana Tassi, Giovanni Orlandi, Francesco Perini, Norina Marcello, Antonia Nucera, Francesca Massaro, Maria Luisa DeLodovici, Giorgio Bono, Maria Sessa, Rosanna Abbate, and Domenico Inzitari
Frontiers in Neurology, 2015, Volume 6
[10]
Yuan-zhi XU, Zhi-gang YANG, Yong-wei ZHANG, Bo HONG, and Jian-min LIU
Academic Journal of Second Military Medical University, 2013, Volume 32, Number 6, Page 654
[11]
Carlos M Laborde, Laura Mourino–Alvarez, Finn Akerstrom, Luis R Padial, Fernando Vivanco, Felix Gil-Dones, and Maria G Barderas
Expert Review of Proteomics, 2012, Volume 9, Number 4, Page 437
[12]
Stefan H. Kreisel, Mark Stroick, Björn Reuter, Eva Senn, Michael G. Hennerici, and Marc Fatar
Journal of Clinical Neuroscience, 2012, Volume 19, Number 11, Page 1564
[13]
Maria Ramos-Fernandez, M. Fernanda Bellolio, and Latha G. Stead
Journal of Stroke and Cerebrovascular Diseases, 2011, Volume 20, Number 1, Page 47
[14]
Ana-Maria Simundic, Nora Nikolac, Elizabeta Topic, Vanja Basic-Kes, and Vida Demarin
Clinical Chemistry and Laboratory Medicine, 2008, Volume 46, Number 8
[15]
Anna Morancho, Anna Rosell, Lidia García-Bonilla, and Joan Montaner
Annals of the New York Academy of Sciences, 2010, Volume 1207, Number 1, Page 123
[16]
Dezhi Liu, Song Ge, Guangyi Zhou, Gelin Xu, Renliang Zhang, Wusheng Zhu, Zhenguo Liu, Songming Cheng, and Xinfeng Liu
Cardiovascular Drugs and Therapy, 2009, Volume 23, Number 6, Page 431
[17]
V. Lucivero, M. Prontera, D. M. Mezzapesa, M. Petruzzellis, M. Sancilio, A. Tinelli, D. Di Noia, M. Ruggieri, and F. Federico
Neurological Sciences, 2007, Volume 28, Number 4, Page 165

Comments (0)

Please log in or register to comment.
Log in