Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter / Tate, Jillian R.

12 Issues per year


IMPACT FACTOR 2016: 3.432

CiteScore 2016: 2.21

SCImago Journal Rank (SJR) 2016: 1.000
Source Normalized Impact per Paper (SNIP) 2016: 1.112

Online
ISSN
1437-4331
See all formats and pricing
More options …
Volume 44, Issue 5 (May 2006)

Issues

Real-time RT-PCR quantification of PRAME gene expression for monitoring minimal residual disease in acute myeloblastic leukaemia

Nicolas Tajeddine / Isabelle Millard
  • Laboratory of Applied Molecular Technology, Center for Human Genetics, Université catholique de Louvain, Brussels, Belgium
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Philippe Gailly / Jean-Luc Gala
  • Laboratory of Applied Molecular Technology, Center for Human Genetics, Université catholique de Louvain, Brussels, Belgium and Defence Laboratories Department (DG MR), Belgian Armed Forces, Brussels, Belgium
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-09-21 | DOI: https://doi.org/10.1515/CCLM.2006.106

Abstract

Background: Specific gene rearrangements are used for minimal residual disease (MRD) assessment, but are frequently lacking in leukaemias. In these cases, the quantification of PRAME (preferentially expressed antigen of melanoma) transcripts could be useful.

Methods: PRAME transcripts were quantified by real-time RT-PCR in normal and leukaemic samples, and the results were compared with those of conventional RT-PCR. Basal expression of PRAME was determined in 25 blood samples and 25 bone marrow samples from healthy donors, as well as in 12 haematological cell lines (Jurkat, K562, HL60, DOHH2, IM9, Daudi, CEM, KG1, DG75, 8226, U937, Raji).

Results: In paediatric acute myeloid leukaemia (AML) (n=22) and acute lymphoblastic leukaemia (ALL) (n=17), and in adult AML (n=20), abnormal PRAME expression was found in 41%, 35% and 40% of cases, respectively. To assess the sensitivity of PRAME for monitoring MRD, PRAME-positive t(8;21) AML samples with detectable AML1/ETO expression by conventional RT-PCR (n=17) were assessed for quantitative expression of AML1/ETO and PRAME. The expression of these genes was closely correlated. To confirm that PRAME expression was correlated with clinical data, the expression of PRAME was also sequentially followed in patients (n=13) from onset to cytological remission or relapse. The cytological and molecular data were highly correlated in all patients.

Conclusions: Our data confirm that PRAME quantification by real-time RT-PCR appears suitable for monitoring MRD in PRAME-positive leukaemia.

Keywords: leukaemia; minimal residual disease; PRAME (preferentially expressed antigen of melanoma); real-time RT-PCR

References

  • 1.

    Campana D. Determination of minimal residual disease in leukaemia patients. Br J Haematol 2003; 121:823–38.Google Scholar

  • 2.

    Cave H, van der Werff ten Bosch J, Suciu S, Guidal C, Waterkeyn C, Otten J, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer – Childhood Leukemia Cooperative Group. N Engl J Med 1998; 339:591–8.Google Scholar

  • 3.

    Pongers-Willemse MJ, Verhagen OJ, Tibbe GJ, Wijkhuijs AJ, de Haas V, Roovers E, et al. Real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes. Leukemia 1998; 12:2006–14.CrossrefGoogle Scholar

  • 4.

    van Dongen JJ, Seriu T, Panzer-Grumayer ER, Biondi A, Pongers-Willemse MJ, Corral L, et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 1998; 352:1731–8.Google Scholar

  • 5.

    Ikeda H, Lethe B, Lehmann F, van Baren N, Baurain JF, de Smet C, et al. Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity 1997; 6:199–208.CrossrefGoogle Scholar

  • 6.

    van Baren N, Chambost H, Ferrant A, Michaux L, Ikeda H, Millard I, et al. PRAME, a gene encoding an antigen recognized on a human melanoma by cytolytic T cells, is expressed in acute leukaemia cells. Br J Haematol 1998; 102:1376–9.Google Scholar

  • 7.

    Tajeddine N, Gala JL, Louis M, Van Schoor M, Tombal B, Gailly P. Tumor-associated antigen preferentially expressed antigen of melanoma (PRAME) induces caspase-independent cell death in vitro and reduces tumorigenicity in vivo. Cancer Res 2005; 65:7348–55.Google Scholar

  • 8.

    McElwaine S, Mulligan C, Groet J, Spinelli M, Rinaldi A, Denyer G, et al. Microarray transcript profiling distinguishes the transient from the acute type of megakaryoblastic leukaemia (M7) in Down's syndrome, revealing PRAME as a specific discriminating marker. Br J Haematol 2004; 125:729–42.Google Scholar

  • 9.

    Steinbach D, Hermann J, Viehmann S, Zintl F, Gruhn B. Clinical implications of PRAME gene expression in childhood acute myeloid leukemia. Cancer Genet Cytogenet 2002; 133:118–23.Google Scholar

  • 10.

    Matsushita M, Yamazaki R, Ikeda H, Kawakami Y. Preferentially expressed antigen of melanoma (PRAME) in the development of diagnostic and therapeutic methods for hematological malignancies. Leuk Lymphoma 2003; 44:439–44.CrossrefGoogle Scholar

  • 11.

    Matsushita M, Ikeda H, Kizaki M, Okamoto S, Ogasawara M, Ikeda Y, et al. Quantitative monitoring of the PRAME gene for the detection of minimal residual disease in leukaemia. Br J Haematol 2001; 112:916–26.Google Scholar

  • 12.

    Guerrasio A, Pilatrino C, De Micheli D, Cilloni D, Serra A, Gottardi E, et al. Assessment of minimal residual disease (MRD) in CBFbeta/MYH11-positive acute myeloid leukemias by qualitative and quantitative RT-PCR amplification of fusion transcripts. Leukemia 2002; 16:1176–81.CrossrefGoogle Scholar

  • 13.

    Wattjes MP, Krauter J, Nagel S, Heidenreich O, Ganser A, Heil G. Comparison of nested competitive RT-PCR and real-time RT-PCR for the detection and quantification of AML1/MTG8 fusion transcripts in t(8;21) positive acute myelogenous leukemia. Leukemia 2000; 14:329–35.Google Scholar

  • 14.

    Donovan JW, Ladetto M, Zou G, Neuberg D, Poor C, Bowers D, et al. Immunoglobulin heavy-chain consensus probes for real-time PCR quantification of residual disease in acute lymphoblastic leukemia. Blood 2000; 95:2651–8.Google Scholar

  • 15.

    Cilloni D, Gottardi E, De Micheli D, Serra A, Volpe G, Messa F, et al. Quantitative assessment of WT1 expression by real time quantitative PCR may be a useful tool for monitoring minimal residual disease in acute leukemia patients. Leukemia 2002; 16:2115–21.CrossrefGoogle Scholar

  • 16.

    Hosen N, Sonoda Y, Oji Y, Kimura T, Minamiguchi H, Tamaki H, et al. Very low frequencies of human normal CD34+ haematopoietic progenitor cells express the Wilms' tumour gene WT1 at levels similar to those in leukaemia cells. Br J Haematol 2002; 116:409–20.Google Scholar

  • 17.

    Elmaagacli AH, Beelen DW, Trenschel R, Schaefer UW. The detection of wt-1 transcripts is not associated with an increased leukemic relapse rate in patients with acute leukemia after allogeneic bone marrow or peripheral blood stem cell transplantation. Bone Marrow Transplant 2000; 25:91–6.CrossrefGoogle Scholar

  • 18.

    Steinbach D, Viehmann S, Zintl F, Gruhn B. PRAME gene expression in childhood acute lymphoblastic leukemia. Cancer Genet Cytogenet 2002; 138:89–91.Google Scholar

  • 19.

    Paydas S, Tanriverdi K, Yavuz S, Disel U, Baslamisli F, Burgut R. PRAME mRNA levels in cases with acute leukemia: clinical importance and future prospects. Am J Hematol 2005; 79:257–61.Google Scholar

  • 20.

    Deindl E, Boengler K, van Royen N, Schaper W. Differential expression of GAPDH and beta3-actin in growing collateral arteries. Mol Cell Biochem 2002; 236:139–46.Google Scholar

  • 21.

    Glare EM, Divjak M, Bailey MJ, Walters EH. β-Actin and GAPDH housekeeping gene expression in asthmatic airways is variable and not suitable for normalising mRNA levels. Thorax 2002; 57:765–70.Google Scholar

  • 22.

    Selvey S, Thompson EW, Matthaei K, Lea RA, Irving MG, Griffiths LR. β-Actin – an unsuitable internal control for RT-PCR. Mol Cell Probes 2001; 15:307–11.CrossrefGoogle Scholar

  • 23.

    Steele BK, Meyers C, Ozbun MA. Variable expression of some “housekeeping” genes during human keratinocyte differentiation. Anal Biochem 2002; 307:341–7.Google Scholar

  • 24.

    Gala JL, Heusterspreute M, Loric S, Hanon F, Tombal B, Van Cangh P, et al. Expression of prostate-specific antigen and prostate-specific membrane antigen transcripts in blood cells: implications for the detection of hematogenous prostate cells and standardization. Clin Chem 1998; 44:472–81.Google Scholar

  • 25.

    Dekairelle A, Tombal B, Cosyns J, Gala J. Assessment of the transcriptional activity of p53 improves the prediction of recurrence in superficial transitional cell carcinoma (TCC) of the bladder. Clin Cancer Res 2005; 11:4724–32.Google Scholar

  • 26.

    Greiner J, Ringhoffer M, Simikopinko O, Szmaragowska A, Huebsch S, Maurer U, et al. Simultaneous expression of different immunogenic antigens in acute myeloid leukemia. Exp Hematol 2000; 28:1413–22.Google Scholar

  • 27.

    Greiner J, Ringhoffer M, Taniguchi M, Li L, Schmitt A, Shiku H, et al. mRNA expression of leukemia-associated antigens in patients with acute myeloid leukemia for the development of specific immunotherapies. Int J Cancer 2004; 108:704–11.Google Scholar

About the article

Corresponding author: Prof. Jean-Luc Gala, MD, PhD, Laboratory of Applied Molecular Technology, Center for Human Genetics (UCL), Clos Chappelle-aux-Champs, 30-UCL30.46, 1200 Brussels, Belgium Phone: +32-2-7643165, Fax: +32-2-7643166,


Received: 2005-12-14

Accepted: 2006-02-12

Published Online: 2011-09-21

Published in Print: 2006-05-01


Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/CCLM.2006.106.

Export Citation

©2006 by Walter de Gruyter Berlin New York. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Frances R. Wadelin, Joel Fulton, Hilary M. Collins, Nikolaos Tertipis, Andrew Bottley, Keith A. Spriggs, Franco H. Falcone, David M. Heery, and William R. Abrams
PLoS ONE, 2013, Volume 8, Number 2, Page e58052
[2]
Marion Subklewe, Christiane Geiger, Felix S. Lichtenegger, Miran Javorovic, Gunnar Kvalheim, Dolores J. Schendel, and Iris Bigalke
Cancer Immunology, Immunotherapy, 2014, Volume 63, Number 10, Page 1093
[3]
Wenhui Zhang, Kaikai Chi, Yin Zhang, Baogen Ma, Jie Shi, Yuqing Chen, Pingchong Lei, Yulong Li, and Kai Sun
Acta Haematologica, 2013, Volume 130, Number 4, Page 297
[4]
A. Spanaki, C. Perdikogianni, E. Linardakis, and M. Kalmanti
Leukemia Research, 2007, Volume 31, Number 5, Page 639
[5]
Semra Paydas
Leukemia Research, 2008, Volume 32, Number 9, Page 1356
[6]
Evgeny Arons, Tara Suntum, Inger Margulies, Constance Yuan, Maryalice Stetler-Stevenson, and Robert J. Kreitman
Leukemia Research, 2008, Volume 32, Number 9, Page 1400
[7]
Nicolas Tajeddine, Magali Louis, Christiane Vermylen, Jean-Luc Gala, Bertrand Tombal, and Philippe Gailly
Leukemia & Lymphoma, 2008, Volume 49, Number 6, Page 1123
[8]
Gerrit Jan Schuurhuis and Gert Ossenkoppele
Expert Review of Hematology, 2010, Volume 3, Number 1, Page 1
[9]
K. Rezvani, A. S. M. Yong, A. Tawab, B. Jafarpour, R. Eniafe, S. Mielke, B. N. Savani, K. Keyvanfar, Y. Li, R. Kurlander, and A. J. Barrett
Blood, 2009, Volume 113, Number 10, Page 2245
[10]
Christina A. Ortmann, Lewin Eisele, Holger Nückel, Ludger Klein-Hitpass, Anja Führer, Ulrich Dührsen, and Michael Zeschnigk
Annals of Hematology, 2008, Volume 87, Number 10, Page 809
[11]
Padraig Doolan, Martin Clynes, Susan Kennedy, Jai Prakash Mehta, John Crown, and Lorraine O’Driscoll
Breast Cancer Research and Treatment, 2008, Volume 109, Number 2, Page 359
[12]
Wolfgang Kern, Claudia Haferlach, Torsten Haferlach, and Susanne Schnittger
Cancer, 2008, Volume 112, Number 1, Page 4
[13]
Hematological Oncology, 2007, Volume 25, Number 1, Page 44

Comments (0)

Please log in or register to comment.
Log in