Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter / Tate, Jillian R.

12 Issues per year

IMPACT FACTOR 2016: 3.432

CiteScore 2016: 2.21

SCImago Journal Rank (SJR) 2016: 1.000
Source Normalized Impact per Paper (SNIP) 2016: 1.112

See all formats and pricing
More options …
Volume 44, Issue 5 (May 2006)


Immunochemical quantification of free immunoglobulin light chains from an analytical perspective

Takanari Nakano / Shuichi Miyazaki / Hidenori Takahashi / Akira Matsumori
  • Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Taro Maruyama / Tsugikazu Komoda / Atsuo Nagata
Published Online: 2011-09-21 | DOI: https://doi.org/10.1515/CCLM.2006.118


Immunoglobulin light chains are components of antibodies, but some exist in a free form in serum and urine as a result of their excess production over heavy chains. Free light chain (FLC) levels are of the order of milligram per liter in normal serum and urine, but marked increases have been observed in various disease conditions. It has now been established that the measurement of FLC levels contributes to diagnosis and clinical management in monoclonal gammopathies. Recent developments in FLC assays have been adapted to several automated platforms and they have now become available in laboratories. There have, however, been some concerns regarding the analytical aspects. The current assay specificity appears to be insufficient to prevent the influence of intact light chains of several orders of magnitude greater than FLCs in serum. Moreover, the heterogeneous nature of light chains makes accurate quantification unreliable. FLC assays have never been standardized because of the lack of an international reference calibrator. In this review, we summarize the reports on FLC measurements and examine the specificity of anti-FLC antibodies and the reliability of FLC assays. We also discuss difficulties in the standardization and setting of normal reference intervals for FLC assays.

Keywords: antibody; Bence Jones protein; free immunoglobulin light chain; immunoassay; standardization


  • 1.

    Bence Jones H. Papers on chemical pathology: lecture III. Lancet 1847; ii:88–92.CrossrefGoogle Scholar

  • 2.

    Edelman GM, Gally JA. The nature of Bence-Jones proteins. Chemical similarities to polypetide chains of myeloma globulins and normal gamma-globulins. J Exp Med 1962; 116:207–27.CrossrefGoogle Scholar

  • 3.

    Merlini G, Aguzzi F, Whicher J. Monoclonal gammopathies. J Int Fed Clin Chem 1997; 9:171–6.Google Scholar

  • 4.

    Graziani M, Merlini G, Petrini C. Guidelines for the analysis of Bence Jones protein. Clin Chem Lab Med 2003; 41:338–46.CrossrefGoogle Scholar

  • 5.

    Marshall T, Williams KM. Electrophoretic analysis of Bence Jones proteinuria. Electrophoresis 1999; 20:1307–24.CrossrefGoogle Scholar

  • 6.

    Levinson SS, Keren DF. Free light chains of immunoglobulins: clinical laboratory analysis. Clin Chem 1994; 40:1869–78.Google Scholar

  • 7.

    Brigden ML, Neal ED, McNeely MD, Hoag GN. The optimum urine collections for the detection and monitoring of Bence Jones proteinuria. Am J Clin Pathol 1990; 93:689–93.CrossrefGoogle Scholar

  • 8.

    Monos DS, Bina M, Kahn SN. Evaluation and optimization of variables in immunofixation electrophoresis for the detection of IgG paraproteins. Clin Biochem 1989; 22:369–71.CrossrefGoogle Scholar

  • 9.

    Tan M, Epstein WV. A direct immunologic assay of human sera for Bence Jones proteins (L-chains). J Lab Clin Med 1965; 66:344–56.Google Scholar

  • 10.

    Sölling K, Nielsen JL, Sölling J, Ellegaard J. Free light chains of immunoglobulins in serum from patients with leukaemias and multiple myeloma. Scand J Haematol 1982; 28:309–18.CrossrefGoogle Scholar

  • 11.

    McLaughlin P, Alexanian R. Myeloma protein kinetics following chemotherapy. Blood 1982; 60:851–5.Google Scholar

  • 12.

    Bradwell AR, Carr-Smith HD, Mead GP, Tang LX, Showell PJ, Drayson MT, et al. Highly sensitive, automated immunoassay for immunoglobulin free light chains in serum and urine. Clin Chem 2001; 47:673–80.Google Scholar

  • 13.

    Bradwell AR, Carr-Smith H, Mead GP, Drayson M. Serum free light chain immunoassays and their clinical application. Clin Appl Immunol Rev 2002; 3:17–33.CrossrefGoogle Scholar

  • 14.

    Katzmann JA, Abraham RS, Dispenzieri A, Lust JA, Kyle RA. Diagnostic performance of quantitative κ and λ free light chain assays in clinical practice. Clin Chem 2005; 51:878–81.CrossrefGoogle Scholar

  • 15.

    Gertz MA, Commenzo R, Falk RH, Fermand JP, Hazenberg BP, Hawkins PN. Definition of organ involvement and treatment response in primary systemic amyloidosis (AL): a consensus opinion from the 10th International Symposium on Amyloid and Amyloidosis. In: Gateau G, Kyle RA, Skinner M, editors. Amyloid and amyloidosis. Boca Raton, FL: CRC Press, 2004:151–3.Google Scholar

  • 16.

    Tate JR, Gill D, Cobcroft R, Hickman PE. Practical considerations for the measurement of free light chains in serum. Clin Chem 2003; 49:1252–7.CrossrefGoogle Scholar

  • 17.

    Nakano T, Nagata A. ELISAs for free human immunoglobulin light chains in serum: improvement of assay specificity by using two specific antibodies in a sandwich detection method. J Immunol Methods 2004; 293:183–9.CrossrefGoogle Scholar

  • 18.

    Sölling K. Free light chains of immunoglobulins. Scand J Clin Lab Invest Suppl 1981; 157:1–83.Google Scholar

  • 19.

    Bradwell AR. Serum free light chain measurements move to center stage. Clin Chem 2005; 51:805–7.CrossrefGoogle Scholar

  • 20.

    Dammacco F, Waldenström J. Serum and urine light chain levels in benign monoclonal gammapathies, multiple myeloma and Waldenström's macroglobulinaemia. Clin Exp Immunol 1968; 3:911–21.Google Scholar

  • 21.

    Mann D, Granger H, Fahey JL. Use of insoluble antibody for quantitative determination of small amounts of immunoglobulin. J Immunol 1969; 102:618–24.Google Scholar

  • 22.

    Peterson PA, Berggård I. Urinary immunoglobulin components in normal, tubular, and glomerular proteinuria: quantities and characteristics of free light chains, IgG, IgA, and Fc-gamma fragment. Eur J Clin Invest 1971; 1:255–64.Google Scholar

  • 23.

    Abraham GN, Waterhouse C. Evidence for defective immunoglobulin metabolism in severe renal insufficiency. Am J Med Sci 1974; 268:227–33.CrossrefGoogle Scholar

  • 24.

    Sölling K. Free light chains of immunoglobulins in normal serum and urine determined by radioimmunoassay. Scand J Clin Lab Invest 1975; 35:407–12.CrossrefGoogle Scholar

  • 25.

    Hemmingsen L, Skaarup P. Urinary excretion of ten plasma proteins in patients with febrile diseases. Acta Med Scand 1977; 201:359–64.CrossrefGoogle Scholar

  • 26.

    Cole PW, Durie BG, Salmon SE. Immunoquantitation of free light chain immunoglobulins: applications in multiple myeloma. J Immunol Methods 1978; 19:341–9.CrossrefGoogle Scholar

  • 27.

    Robinson EL, Gowland E, Ward ID, Scarffe JH. Radioimmunoassay of free light chains of immunoglobulins in urine. Clin Chem 1982; 28:2254–8.Google Scholar

  • 28.

    Ling NR, Lowe J, Hardie D, Evans S, Jefferis R. Detection of free κ chains in human serum and urine using pairs of monoclonal antibodies reacting with Ck epitopes not available on whole immunoglobulins. Clin Exp Immunol 1983; 52:234–40.Google Scholar

  • 29.

    McLeod BC, Viernes AL, Sassetti RJ. Serum-free light chain analysis by crossed immunoelectrophoresis: correlation with plasmapheresis in light chain disease nephropathy. Am J Hematol 1983; 15:75–88.CrossrefGoogle Scholar

  • 30.

    Brouwer J, Otting-van de Ruit M, Busking-van der Lely H. Estimation of free light chains of immunoglobulins by enzyme immunoassay. Clin Chim Acta 1985; 150:267–74.CrossrefGoogle Scholar

  • 31.

    Rudick RA, Peter DR, Bidlack JM, Knutson DW. Multiple sclerosis: free light chains in cerebrospinal fluid. Neurology 1985; 35:1443–9.CrossrefGoogle Scholar

  • 32.

    Teppo AM, Groop L. Urinary excretion of plasma proteins in diabetic subjects. Increased excretion of kappa light chains in diabetic patients with and without proliferative retinopathy. Diabetes 1985; 34:589–94.CrossrefGoogle Scholar

  • 33.

    Axiak SM, Krishnamoorthy L, Guinan J, Raison RL. Quantitation of free κ light chains in serum and urine using a monoclonal antibody based inhibition enzyme-linked immunoassay. J Immunol Methods 1987; 99:141–7.CrossrefGoogle Scholar

  • 34.

    Fagnart OC, Sindic CJ, Laterre C. Free kappa and lambda light chain levels in the cerebrospinal fluid of patients with multiple sclerosis and other neurological diseases. J Neuroimmunol 1988; 19:119–32.CrossrefGoogle Scholar

  • 35.

    Lolli F, Amaducci L. Measurement of free kappa immunoglobulin light chains in the cerebrospinal fluid by a competitive avidin-biotin ELISA. Clin Chim Acta 1989; 182:229–34.CrossrefGoogle Scholar

  • 36.

    Mehta PD, Cook SD, Troiano RA, Coyle PK. Increased free light chains in the urine from patients with multiple sclerosis. Neurology 1991; 41:540–4.CrossrefGoogle Scholar

  • 37.

    Stanescu GL, Swick AR, Tuohy VK, Rudick RA. Sensitive competitive-binding ELISAs for quantifying free kappa and lambda light chains in cerebrospinal fluid. J Clin Lab Anal 1991; 5:206–11.CrossrefGoogle Scholar

  • 38.

    Tillyer CR, Iqbal J, Raymond J, Gore M, McIlwain TJ. Immunoturbidimetric assay for estimating free light chains of immunoglobulins in urine and serum. J Clin Pathol 1991; 44:466–71.CrossrefGoogle Scholar

  • 39.

    Wakasugi K, Sasaki M, Suzuki M, Azuma N, Nobuto T. Increased concentrations of free light chain lambda in sera from chronic hemodialysis patients. Biomater Artif Cells Immobilization Biotechnol 1991; 19:97–109.Google Scholar

  • 40.

    Nelson M, Brown RD, Gibson J, Joshua DE. Measurement of free kappa and lambda chains in serum and the significance of their ratio in patients with multiple myeloma. Br J Haematol 1992; 81:223–30.CrossrefGoogle Scholar

  • 41.

    Wakasugi K, Suzuki H, Imai A, Konishi S, Kishioka H. Immunoglobulin free light chain assay using latex agglutination. Int J Clin Lab Res 1995; 25:211–5.CrossrefGoogle Scholar

  • 42.

    Ohtani K, Mashiko T, Jimbo S, Ohtani H. Determination of free light chain in urine by latex immunoassay. Kitasato Med 1997; 27:33–26.Google Scholar

  • 43.

    Abe M, Goto T, Kosaka M, Wolfenbarger D, Weiss DT, Solomon A. Differences in kappa to lambda (κ:λ) ratios of serum and urinary free light chains. Clin Exp Immunol 1998; 111:457–62.CrossrefGoogle Scholar

  • 44.

    Nakano T, Nagata A. ELISAs for free light chains of human immunoglobulins using monoclonal antibodies: comparison of their specificity with available polyclonal antibodies. J Immunol Methods 2003; 275:9–17.CrossrefGoogle Scholar

  • 45.

    Epstein WV, Tan M. Increase of L-chain proteins in the sera of patients with systemic lupus erythematosus and the synovial fluids of patients with peripheral rheumatoid arthritis. Arthritis Rheum 1966; 9:713–9.CrossrefGoogle Scholar

  • 46.

    Cooper A, Bluestone R. Free immunoglobulin light chains in connective tissue diseases. Ann Rheum Dis 1968; 27:537–43.CrossrefGoogle Scholar

  • 47.

    Le Bricon T, Bengoufa D, Benlakehal M, Bousquet B, Erlich D. Urinary free light chain analysis by the Freelite immunoassay: a preliminary study in multiple myeloma. Clin Biochem 2002; 35:565–7.CrossrefGoogle Scholar

  • 48.

    Levinson SS. Studies of Bence Jones proteins by immunonephelometry. Ann Clin Lab Sci 1992; 22:100–9.Google Scholar

  • 49.

    Boege F, Koehler B, Liebermann F. Identification and quantification of Bence-Jones proteinuria by automated nephelometric screening. J Clin Chem Clin Biochem 1990; 28:37–42.Google Scholar

  • 50.

    Nakano T, Nagata A, Takahashi H. Ratio of urinary free immunoglobulin light chain κ to λ in the diagnosis of Bence Jones proteinuria. Clin Chem Lab Med 2004; 42:429–34.CrossrefGoogle Scholar

  • 51.

    Boux HA, Raison RL, Walker KZ, Hayden GE, Basten A. A tumor-associated antigen specific for human kappa myeloma cells. J Exp Med 1983; 158:1769–74.CrossrefGoogle Scholar

  • 52.

    Abe M, Goto T, Kennel SJ, Wolfenbarger D, Macy SD, Weiss DT, et al. Production and immunodiagnostic applications of antihuman light chain monoclonal antibodies. Am J Clin Pathol 1993; 100:67–74.CrossrefGoogle Scholar

  • 53.

    Jenkins MA, O'Leary TD, Guerin MD. Identification and quantitation of human urine proteins by capillary electrophoresis. J Chromatogr B Biomed Appl 1994; 662:108–12.CrossrefGoogle Scholar

  • 54.

    Katzmann JA, Clark R, Sanders E, Landers JP, Kyle RA. Prospective study of serum protein capillary zone electrophoresis and immunotyping of monoclonal proteins by immunosubtraction. Am J Clin Pathol 1998; 110:503–9.CrossrefGoogle Scholar

  • 55.

    Bradwell AR, Carr-Smith HD, Mead GP, Harvey TC, Drayson MT. Serum test for assessment of patients with Bence Jones myeloma. Lancet 2003; 361:489–91.CrossrefGoogle Scholar

  • 56.

    Mead GP, Carr-Smith HD, Drayson MT, Bradwell AR. Detection of Bence Jones myeloma and monitoring of myeloma chemotherapy using immunoassays specific for free immunoglobulin light chains. Clin Lab 2003; 49:25–7.Google Scholar

  • 57.

    Drayson M, Tang LX, Drew R, Mead GP, Carr-Smith H, Bradwell AR. Serum free light-chain measurements for identifying and monitoring patients with nonsecretory multiple myeloma. Blood 2001; 97:2900–2.CrossrefGoogle Scholar

  • 58.

    Graziani MS, Merlini G. Measurement of free light chains in urine. Clin Chem 2001; 47:2069–70.Google Scholar

  • 59.

    Heino J, Rajamaki A, Irjala K. Turbidimetric measurement of Bence-Jones proteins using antibodies against free light chains of immunoglobulins. An artifact caused by different polymeric forms of light chains. Scand J Clin Lab Invest 1984; 44:173–6.CrossrefGoogle Scholar

  • 60.

    Sölling K. Polymeric forms of free light chains in serum from normal individuals and from patients with renal diseases. Scand J Clin Lab Invest 1976; 36:447–52.CrossrefGoogle Scholar

  • 61.

    Nakano T, Miyazaki S, Shinoda Y, Inoue I, Katayama S, Komoda T, et al. A proposed reference material for human free immunoglobulin light chain measurement. J Immunoassay Immunochem. In press.Google Scholar

  • 62.

    Carr-Smith H, Edwards J, Showell P, Drew R, Tang LX, Bradwell AR. Preparation of an immunoglobulin free light-chain reference material. Clin Chem 2000; 46:A180.Google Scholar

  • 63.

    Kyle RA. Sequence of testing for monoclonal gammopathies. Arch Pathol Lab Med 1999; 123:114–8.Google Scholar

  • 64.

    Keren DF, Alexanian R, Goeken JA, Gorevic PD, Kyle RA, Tomar RH. Guidelines for clinical and laboratory evaluation patients with monoclonal gammopathies. Arch Pathol Lab Med 1999; 123:106–7.Google Scholar

  • 65.

    Bush D, Keren DF. Over- and underestimation of monoclonal gammopathies by quantification of κ- and λ-containing immunoglobulins in serum. Clin Chem 1992; 38:315–6.Google Scholar

  • 66.

    Riches PG, Sheldon J, Smith AM, Hobbs JR. Overestimation of monoclonal immunoglobulin by immunochemical methods. Ann Clin Biochem 1991; 28:253–9.CrossrefGoogle Scholar

  • 67.

    Smith AM, Thompson RA. Paraprotein estimation: a comparison of immunochemical and densitometric techniques. J Clin Pathol 1978; 31:1156–60.CrossrefGoogle Scholar

  • 68.

    Hemmingsen L, Skaarup P. The 24-h excretion of plasma proteins in the urine of apparently healthy subjects. Scand J Clin Lab Invest 1975; 35:347–53.Google Scholar

  • 69.

    Groop L, Makipernaa A, Stenman S, DeFronzo RA, Teppo AM. Urinary excretion of kappa light chains in patients with diabetes mellitus. Kidney Int 1990; 37:1120–5.CrossrefGoogle Scholar

  • 70.

    Ohtani S, Ohtani H. Clinical significance of free light chain in urine by latex agglutination immunoassay. Kitasato Med 1998; 28:435–45.Google Scholar

  • 71.

    Katzmann JA, Clark RJ, Abraham RS, Bryant S, Lymp JF, Bradwell AR, et al. Serum reference intervals and diagnostic ranges for free κ and free λ immunoglobulin light chains: relative sensitivity for detection of monoclonal light chains. Clin Chem 2002; 48:1437–44.Google Scholar

  • 72.

    Sölling K. Normal values for free light chains in serum different age groups. Scand J Clin Lab Invest 1977; 37:21–5.CrossrefGoogle Scholar

  • 73.

    Waldmann TA, Strober W, Mogielnicki RP. The renal handling of low molecular weight proteins. II. Disorders of serum protein catabolism in patients with tubular proteinuria, the nephrotic syndrome, or uremia. J Clin Invest 1972; 51:2162–74.CrossrefGoogle Scholar

About the article

Disclosure of potential conflicts of interest: S. Miyazaki and A. Nagata are employees of YAMASA Corporation, which provides materials for FLC ELISAs, and they will be involved in marketing these products. T. Nakano and A. Nagata have developed FLC ELISAs at YAMASA. Corresponding author: Takanari Nakano, PhD, Department of Biochemistry, Saitama Medical School, 38 Morohongo, Moroyama, Iruma-gun, Saitama 350-0495, Japan Phone/Fax: +81-492-76-1155,

Received: 2006-01-14

Accepted: 2006-03-15

Published Online: 2011-09-21

Published in Print: 2006-05-01

Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/CCLM.2006.118.

Export Citation

©2006 by Walter de Gruyter Berlin New York. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

A. Legg, J. A. R. Hobbs, G. P. Mead, and A. R. Bradwell
American Journal of Clinical Pathology, 2009, Volume 131, Number 6, Page 901
David Zeman, Pavlína Kušnierová, Zdeněk Švagera, František Všianský, Monika Byrtusová, Pavel Hradílek, Barbora Kurková, Olga Zapletalová, Vladimír Bartoš, and Güher Saruhan-Direskeneli
PLOS ONE, 2016, Volume 11, Number 11, Page e0166556
David Zeman, Pavel Hradilek, Pavlina Kusnierova, Radim Piza, Katarina Reguliova, Ivana Woznicova, and Olga Zapletalova
Biomedical Papers, 2014
S. H. K. Murng, L. Follows, P. Whitfield, J. A. Snowden, K. Swallow, K. Green, R. Sargur, and W. Egner
Clinical & Experimental Immunology, 2013, Volume 171, Number 2, Page 201
Lola Máiz Suárez, Nuria Garnacho Gayarre, Julia Cabo del Riego, Manuel Penedo Pita, Dolores Formoso Lavandeira, and Ramiro Rueda Rúa
Revista del Laboratorio Clínico, 2013, Volume 6, Number 1, Page 18
Céline Beauvillain, Gilles Renier, Pascale Jeannin, Norbert Ifrah, and Alain Chevailler
Revue Francophone des Laboratoires, 2008, Volume 2008, Number 404, Page 37
V. Maisnar, M. Tichy, J. Stulik, J. Vavrova, B. Friedecky, V. Palicka, J. Spirkova, L. Zaloudkova, L. Hernychova, J. Spacilova, T. Buchler, and R. Hajek
Clinical Biochemistry, 2011, Volume 44, Number 5-6, Page 403
Takanari Nakano, Hidenori Takahashi, Shuichi Miyazaki, Shin-ichiro Kawai, Rina Shinozaki, Tsugikazu Komoda, and Atsuo Nagata
Clinical Biochemistry, 2006, Volume 39, Number 9, Page 955
Sacha N. Uljon, Paul G. Richardson, Peter H. Schur, Kenneth C. Anderson, Milenko J. Tanasijevic, and Neal I. Lindeman
Clinica Chimica Acta, 2011, Volume 412, Number 7-8, Page 562
Takanari Nakano, Masanori Matsui, Ikuo Inoue, Takuya Awata, Shigehiro Katayama, and Takayuki Murakoshi
Clinica Chimica Acta, 2011, Volume 412, Number 11-12, Page 843
Henk te Velthuis, Ingrid Knop, Peter Stam, Monic van den Broek, Hannie Klaasse Bos, Suzanne Hol, Elisa Teunissen, Karin Schulte Fischedick, Harald Althaus, Brigitta Schmidt, Carola Wagner, and Roel Melsert
Clinical Chemistry and Laboratory Medicine, 2011, Volume 49, Number 8
Klas Böer and Thomas Deufel
Clinical Chemistry and Laboratory Medicine, 2009, Volume 47, Number 9
Ewan Robson, Graham Mead, and Arthur Bradwell
Clinical Chemical Laboratory Medicine, 2007, Volume 45, Number 2
Pierre-Yves Briand, Olivier Decaux, Hélène Caillon, Bernard Grosbois, André Le Treut, and Lucienne Guenet
Clinical Chemistry and Laboratory Medicine, 2010, Volume 48, Number 1
Takanari Nakano, Tsugikazu Komoda, and Atsuo Nagata
Clinical Chemical Laboratory Medicine, 2007, Volume 45, Number 2
Giampaolo Merlini
Clinical Chemistry and Laboratory Medicine, 2009, Volume 47, Number 9
Jaroslava Vávrová, Vladimír Maisnar, Miloš Tichý, Bedřich Friedecký, Zdeňka Čermáková, Milan Dastych, Jana Gottwaldová, Petr Kučera, Jarmila Krotká, Jaroslav Racek, Jana Ženková, Petr Schneiderka, Pavel Lochman, Tomáš Zima, Hana Benáková, Tomáš Büchler, Jana Spáčilová, Roman Hájek, and Vladimír Palička
Clinical Chemistry and Laboratory Medicine, 2011, Volume 49, Number 1

Comments (0)

Please log in or register to comment.
Log in