Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter / Tate, Jillian R.

12 Issues per year


IMPACT FACTOR 2017: 3.556

CiteScore 2017: 2.34

SCImago Journal Rank (SJR) 2017: 1.114
Source Normalized Impact per Paper (SNIP) 2017: 1.188

Online
ISSN
1437-4331
See all formats and pricing
More options …
Volume 44, Issue 9

Issues

Detection of circulating tumour cells in blood by quantitative real-time RT-PCR: effect of pre-analytical time

Ina H. Benoy
  • Translational Cancer Research Group Antwerp, Pathology Laboratory, University of Antwerp/University Hospital Antwerp, Edegem, and Oncology Centre, General Hospital St-Augustinus, Wilrijk, Belgium
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hilde Elst
  • Translational Cancer Research Group Antwerp, Pathology Laboratory, University of Antwerp/University Hospital Antwerp, Edegem, and Oncology Centre, General Hospital St-Augustinus, Wilrijk, Belgium
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Peter Van Dam
  • Translational Cancer Research Group Antwerp, Pathology Laboratory, University of Antwerp/University Hospital Antwerp, Edegem, and Oncology Centre, General Hospital St-Augustinus, Wilrijk, Belgium
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Simon Scharpé / Eric Van Marck
  • Translational Cancer Research Group Antwerp, Pathology Laboratory, University of Antwerp/University Hospital Antwerp, Edegem, and Oncology Centre, General Hospital St-Augustinus, Wilrijk, Belgium
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Peter B. Vermeulen
  • Translational Cancer Research Group Antwerp, Pathology Laboratory, University of Antwerp/University Hospital Antwerp, Edegem, and Oncology Centre, General Hospital St-Augustinus, Wilrijk, Belgium
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Luc Y. Dirix
  • Translational Cancer Research Group Antwerp, Pathology Laboratory, University of Antwerp/University Hospital Antwerp, Edegem, and Oncology Centre, General Hospital St-Augustinus, Wilrijk, Belgium
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-09-21 | DOI: https://doi.org/10.1515/CCLM.2006.210

Abstract

Background: We and others have recently explored the use of quantitative real-time RT-PCR analysis for the detection of circulating tumour cells in blood of patients with breast cancer (BC). One major problem in these experiments is the in vitro instability of the cellular RNA. The copy number of mRNA can change during storage and transport at room temperature and this may hamper accurate quantitative measurements of specific transcripts, especially when working with small numbers of target mRNAs.

Methods: Peripheral blood samples were obtained from two healthy volunteers and 13 patients with BC. Blood was stored at room temperature for 0, 1, 2, 4, 6, 24, 48 and 72h. The potential alteration of gene expression for six target genes was investigated by quantitative real-time RT-PCR.

Results: For β-actin, GAPDH, cytokeratin-19 (CK-19) and HER2, a significant decrease in expression level occurs after 4h (CK-19 and HER2), 6h (β-actin) or 24h (GAPDH). Mammaglobin expression was only measurable in two samples and seems to be stable for at least 6h. For vascular endothelial growth factor (VEGF), a statistically significant increase in expression level is observed in samples processed 24h after collection.

Conclusions: Most transcripts were reduced in samples that were stored overnight at room temperature compared with fresh samples, but upregulation of transcripts, probably as an active response to cellular stress, also occurs when blood is removed from its in vivo environment and stored ex vivo. Optimally, blood samples and RNA should be processed or stabilised within 3h after collection to avoid interference of the in vivo gene expression signature by ex vivo stress responses.

Clin Chem Lab Med 2006;44:1082–7.

Keywords: blood collection; breast cancer; changes in expression level; pre-analytical time; quantitative RT-PCR

References

  • 1.

    Ferrando AA, Look AT. DNA microarrays in the diagnosis and management of acute lymphoblastic leukemia. Int J Hematol 2004; 80:395–400.CrossrefGoogle Scholar

  • 2.

    Greer BT, Khan J. Diagnostic classification of cancer using DNA microarrays and artificial intelligence. Ann NY Acad Sci 2004; 1020:49–66.Google Scholar

  • 3.

    Wadlow R, Ramaswamy S. DNA microarrays in clinical cancer research. Curr Mol Med 2005; 5:111–20.CrossrefGoogle Scholar

  • 4.

    Harkin DP. Uncovering functionally relevant signaling pathways using microarray-based expression profiling. Oncologist 2000; 5:501–7.CrossrefGoogle Scholar

  • 5.

    Zanders ED. Gene expression analysis as an aid to the identification of drug targets. Pharmacogenomics 2000; 1:375–84.CrossrefGoogle Scholar

  • 6.

    Li SR, Ng CF, Banerjea A, Ahmed S, Hands R, Powar M, et al. Differential expression patterns of the insulin-like growth factor 2 gene in human colorectal cancer. Tumour Biol 2004; 25:62–8.CrossrefGoogle Scholar

  • 7.

    Burczynski ME, Oestreicher JL, Cahilly MJ, Mounts DP, Whitley MZ, Speicher LA, et al. Clinical pharmacogenomics and transcriptional profiling in early phase oncology clinical trials. Curr Mol Med 2005; 5:83–102.CrossrefGoogle Scholar

  • 8.

    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature 2000; 406:747–52.Web of ScienceGoogle Scholar

  • 9.

    Van't Veer L, Dai H, Van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415:530–6.Google Scholar

  • 10.

    Ntzani EE, Ioannidis JP. Predictive ability of DNA microarrays for cancer outcomes and correlates: an empirical assessment. Lancet 2003; 362:1439–44.Google Scholar

  • 11.

    Aerts J, Wynendaele W, Paridaens R, Christiaens MR, van den BW, van Oosterom AT, et al. A real-time quantitative reverse transcriptase polymerase chain reaction (RT-PCR) to detect breast carcinoma cells in peripheral blood. Ann Oncol 2001; 12:39–46.CrossrefGoogle Scholar

  • 12.

    Benoy IH, Elst H, Van der Auwera I, Laere SV, Dam PV, Marck EV, et al. Real-time RT-PCR correlates with immunocytochemistry for the detection of disseminated epithelial cells in bone marrow aspirates of patients with breast cancer. Br J Cancer 2004; 91:1813–20.CrossrefGoogle Scholar

  • 13.

    De Luca A, Pignata S, Casamassimi A, D'Antonio A, Gridelli C, Rossi A, et al. Detection of circulating tumor cells in carcinoma patients by a novel epidermal growth factor receptor reverse transcription-PCR assay. Clin Cancer Res 2000; 6:1439–44.Google Scholar

  • 14.

    Grunewald K, Haun M, Urbanek M, Fiegl M, Muller-Holzner E, Gunsilius E, et al. Mammaglobin gene expression: a superior marker of breast cancer cells in peripheral blood in comparison to epidermal-growth-factor receptor and cytokeratin-19. Lab Invest 2000; 80:1071–7.CrossrefGoogle Scholar

  • 15.

    Stathopoulou A, Gizi A, Perraki M, Apostolaki S, Malamos N, Mavroudis D, et al. Real-time quantification of CK-19 mRNA-positive cells in peripheral blood of breast cancer patients using the lightcycler system. Clin Cancer Res 2003; 9:5145–51.Google Scholar

  • 16.

    Suchy B, Austrup F, Driesel G, Eder C, Kusiak I, Uciechowski P, et al. Detection of mammaglobin expressing cells in blood of breast cancer patients. Cancer Lett 2000; 158:171–8.Google Scholar

  • 17.

    Yuan CC, Wang PH, Ng HT, Li YF, Huang TS, Chen CY, et al. Detecting cytokeratin 19 mRNA in the peripheral blood cells of cervical cancer patients and its clinical-pathological correlation. Gynecol Oncol 2002; 85:148–53.CrossrefGoogle Scholar

  • 18.

    Becker S, Becker-Pergola G, Fehm T, Wallwiener D, Solomayer EF. Time is an important factor when processing samples for the detection of disseminated tumor cells in blood/bone marrow by reverse transcription-PCR. Clin Chem 2004; 50:785–6.CrossrefGoogle Scholar

  • 19.

    Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Moser K, Ortmann WA, et al. Expression levels for many genes in human peripheral blood cells are highly sensitive to ex vivo incubation. Genes Immun 2004; 5:347–53.CrossrefGoogle Scholar

  • 20.

    Debey S, Schoenbeck U, Hellmich M, Gathof BS, Pillai R, Zander T, et al. Comparison of different isolation techniques prior gene expression profiling of blood derived cells: impact on physiological responses, on overall expression and the role of different cell types. Pharmacogenomics J 2004; 4:193–207.CrossrefGoogle Scholar

  • 21.

    Tanner MA, Berk LS, Felten DL, Blidy AD, Bit SL, Ruff DW. Substantial changes in gene expression level due to the storage temperature and storage duration of human whole blood. Clin Lab Haematol 2002; 24:337–41.CrossrefGoogle Scholar

  • 22.

    Corradini P, Voena C, Astolfi M, Delloro S, Pilotti S, Arrigoni G, et al. Maspin and mammaglobin genes are specific markers for RT-PCR detection of minimal residual disease in patients with breast cancer. Ann Oncol 2001; 12:1693–8.CrossrefGoogle Scholar

  • 23.

    Slade MJ, Smith BM, Sinnett HD, Cross NC, Coombes RC. Quantitative polymerase chain reaction for the detection of micrometastases in patients with breast cancer. J Clin Oncol 1999; 17:870–9.CrossrefGoogle Scholar

  • 24.

    Xenidis N, Vlachonikolis I, Mavroudis D, Perraki M, Stathopoulou A, Malamos N, et al. Peripheral blood circulating cytokeratin-19 mRNA-positive cells after the completion of adjuvant chemotherapy in patients with operable breast cancer. Ann Oncol 2003; 14:849–55.CrossrefGoogle Scholar

  • 25.

    Ghossein RA, Carusone L, Bhattacharya S. Molecular detection of micrometastases and circulating tumor cells in melanoma prostatic and breast carcinomas. In Vivo 2000; 14:237–50.Google Scholar

About the article

Corresponding author: Luc Y. Dirix, Oncology Centre, General Hospital St-Augustinus, Oosterveldlaan 24, 2610 Antwerp (Wilrijk), Belgium Phone: +32-3-4433648, Fax: +32-3-4433036,


Received: 2006-04-30

Accepted: 2006-06-29

Published Online: 2011-09-21

Published in Print: 2006-09-01


Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), Volume 44, Issue 9, Pages 1082–1087, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/CCLM.2006.210.

Export Citation

©2006 by Walter de Gruyter Berlin New York.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Keith H. K. Wong, Shannon N. Tessier, David T. Miyamoto, Kathleen L. Miller, Lauren D. Bookstaver, Thomas R. Carey, Cleo J. Stannard, Vishal Thapar, Eric C. Tai, Kevin D. Vo, Erin S. Emmons, Haley M. Pleskow, Rebecca D. Sandlin, Lecia V. Sequist, David T. Ting, Daniel A. Haber, Shyamala Maheswaran, Shannon L. Stott, and Mehmet Toner
Nature Communications, 2017, Volume 8, Number 1
[2]
Daniel Gilbert Weber, Swaantje Casjens, Peter Rozynek, Martin Lehnert, Sandra Zilch-Schöneweis, Oleksandr Bryk, Dirk Taeger, Maria Gomolka, Michaela Kreuzer, Heinz Otten, Beate Pesch, Georg Johnen, and Thomas Brüning
Biomarker Insights, 2010, Volume 5, Page BMI.S5522
[3]
Fikret Rifatbegovic, M. Reza Abbasi, Sabine Taschner-Mandl, Maximilian Kauer, Andreas Weinhäusel, Rupert Handgretinger, Peter F. Ambros, and Javier S Castresana
PLOS ONE, 2015, Volume 10, Number 9, Page e0137995
[4]
Ciputra Adijaya Hartana, Johan Kinn, Robert Rosenblatt, Stefan Anania, Farhood Alamdari, Hans Glise, Amir Sherif, and Ola Winqvist
British Journal of Cancer, 2016, Volume 115, Number 8, Page 957
[5]
Jane H. Zhou, Aysegul A. Sahin, and Jeffrey N. Myers
Archives of Pathology & Laboratory Medicine, 2015, Volume 139, Number 6, Page 812
[6]
A. Rafii, F. Vidal, G. Rathat, and C. Alix-Panabières
Journal de Gynécologie Obstétrique et Biologie de la Reproduction, 2014, Volume 43, Number 9, Page 640
[7]
Mohsen Azimi-Nezhad, Daniel Lambert, Catherine Ottone, Corinne Perrin, Celine Chapel, Gwenaëlle Gaillard, Michèle Pfister, Christine Masson, Eric Tabone, Fay Betsou, David Meyronet, Marie-Noëlle Ungeheuer, and Sophie Visvikis Siest
Biopreservation and Biobanking, 2012, Volume 10, Number 5, Page 454
[8]
GuangLiang Li, Jing Zhang, KeTao Jin, KuiFeng He, HaoHao Wang, HaiQi Lu, and LiSong Teng
Biomarkers in Medicine, 2011, Volume 5, Number 2, Page 249
[9]
Yi Ma, HuiLi Dai, and XianMing Kong
Analytical Biochemistry, 2012, Volume 423, Number 2, Page 229
[10]
Francesco Di Costanzo, Pamela Pinzani, Claudio Orlando, Silvia Gasperoni, Laura Vannini, Lorenzo Antonuzzo, and Pazzagli Mario
European Journal of Cancer Supplements, 2008, Volume 6, Number 14, Page 52
[11]
Evi N. Debruyne and Joris R. Delanghe
Clinica Chimica Acta, 2008, Volume 395, Number 1-2, Page 19
[12]
Marianna Alunni-Fabbroni and Maria Teresa Sandri
Methods, 2010, Volume 50, Number 4, Page 289
[13]
Klaus Pantel, Ruud H. Brakenhoff, and Burkhard Brandt
Nature Reviews Cancer, 2008, Volume 8, Number 5, Page 329
[14]
T. J. Molloy, A. J. Bosma, and Laura J. van’t Veer
Breast Cancer Research and Treatment, 2008, Volume 112, Number 2, Page 297
[15]
Makoto Nogami, Tomoaki Hoshi, Mayumi Kinoshita, Tomomi Arai, Michiho Takama, and Ichiro Takahashi
Medical Molecular Morphology, 2007, Volume 40, Number 2, Page 82

Comments (0)

Please log in or register to comment.
Log in