Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter / Tate, Jillian R.

12 Issues per year


IMPACT FACTOR 2017: 3.556

CiteScore 2017: 2.34

SCImago Journal Rank (SJR) 2017: 1.114
Source Normalized Impact per Paper (SNIP) 2017: 1.188

Online
ISSN
1437-4331
See all formats and pricing
More options …
Volume 51, Issue 2

Issues

Bone mass density selectively correlates with serum markers of oxidative damage in post-menopausal women

Carlo Cervellati / Gloria Bonaccorsi / Eleonora Cremonini / Carlo M. Bergamini / Alfredo Patella / Cristina Castaldini / Stefania Ferrazzini / Alessandra Capatti / Venelia Picarelli / Francesco S. Pansini / Leo Massari
  • Menopause and Osteoporosis Centre, University of Ferrara, Ferrara, Italy
  • Department of Biomedical Sciences and Advanced Therapies, Section of Orthopaedic Clinic, Hospital “S. Anna”, University of Ferrara, Ferrara, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-05-23 | DOI: https://doi.org/10.1515/cclm-2012-0095

Abstract

Background: Post-menopausal osteoporosis (PO) affecting a large fraction of elderly women, is triggered by the decline in 17β-estradiol (E2) level. Experimental studies in animal models and cell cultures have suggested that the fall in E2 might contribute to developing oxidative stress (OS) which in turn is believed to play an important role in PO pathogenesis. The scarcity of human studies focusing on this issue prompted us to investigate the effects of the reproductive and post-reproductive phase of women’s life on OS and bone health.

Methods: Serum parameters of oxidative challenge (lipid hydroperoxides and protein advanced oxidation products) and antioxidant defence (total serum antioxidants levels) along with bone mineral density (BMD) at femoral neck and lumbar spine were assessed in a sample of 191 women (98 pre- and 93 post-menopausal, of whom 30 osteoporotic).

Results: Pearson’s correlation analysis unveiled that spinal BMD was negatively correlated with lipid hydroperoxides in overall postmenopausal subsample (r=–0.251, p=0.012), while no significant link between these two variables was detected in women in reproductive age (r=–0.022, p=0.833). Noteworthy, stepwise multiple regression analysis showed that the association found in post-menopausal women retained significance after adjusting for potential confounding factors (p=0.001).

Conclusions: Our data showed that markers of oxidative challenge are associated with bone loss in women in post-menopausal status. We suggest that menopause-related estrogen withdrawal might contribute to make bone more vulnerable to oxidative injury thereby increasing the risk of PO development.

Keywords: bone mineral density; oxidative stress; post-menopausal osteoporosis

References

  • 1.

    Bergamini CM, Gambetti S, Dondi A, Cervellati C. Oxygen, reactive oxygen species and tissue damage. Curr Pharm Des 2004;10:1611–26.Google Scholar

  • 2.

    Pansini F, Mollica G, Bergamini CM. Management of the menopausal disturbances and oxidative stress. Curr Pharm Des 2005;11:2063–73.PubMedCrossrefGoogle Scholar

  • 3.

    Weitzmann MN, Pacifici R. Estrogen deficiency and bone loss: an inflammatory tale. J Clin Invest 2006;116:1186–94.Google Scholar

  • 4.

    Lean JM, Davies JT, Fuller K, Jagger CJ, Kirstein B, Partington GA, et al. A crucial role for thiol antioxidants in estrogen- deficiency bone loss. J Clin Invest 2003;112:915–23.Google Scholar

  • 5.

    Harlow SD, Crawford S, Dennerstein L, Burger HG, Mitchell ES, Sowers MF. Recommendations from a multi-study evaluation of proposed criteria for staging reproductive aging. Climacteric 2007;10:112–9.Web of ScienceCrossrefPubMedGoogle Scholar

  • 6.

    Pansini F, Cervellati C, Guariento A, Stacchini MA, Castaldini C, Bernardi A, et al. Oxidative stress, body fat composition, and endocrine status in pre- and postmenopausal women. Menopause 2008;15:112–8.Web of ScienceGoogle Scholar

  • 7.

    Kanis JA. Diagnosis of osteoporosis and assessment of fracture risk. Lancet 2002;359:1929–36.Google Scholar

  • 8.

    Benzie IF, Strain JJ. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol 1999;299:15–27.Google Scholar

  • 9.

    Witko-Sarsat V, Friedlander M, Capeillere-Blandin C, Nguyen-Khoa T, Nguyen AT, Zingraff J, et al. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 1996;49:1304–13.Google Scholar

  • 10.

    Cervellati C, Bergamini CM, Bonaccorsi G, Patella A, Pansini FS, Pascale G, et al. 17β-Estradiol levels and oxidative balance in a population of pre-, peri- and post-menopausal women. Gynecol Endocrinol 2011;27:1028–32.Web of ScienceCrossrefGoogle Scholar

  • 11.

    Basu S, Michaëlsson K, Olofsson H, Johansson S, Melhus H. Association between oxidative stress and bone mineral density. Biochem Biophys Res Commun 2001;288:275–9.Google Scholar

  • 12.

    Ozgocmen S, Kaya H, Fadillioglu E, Aydogan R, Yilmaz Z. Role of antioxidant systems, lipid peroxidation, and nitric oxide in postmenopausal osteoporosis. Mol Cell Biochem 2007;295:45–52.Web of ScienceGoogle Scholar

  • 13.

    Ostman B, Michaëlsson K, Helmersson J, Byberg L, Gedeborg R, Melhus H, et al. Oxidative stress and bone mineral density in elderly men: antioxidant activity of alpha-tocopherol. Free Radic Biol Med 2009;47:668–73.Google Scholar

  • 14.

    Mangiafico RA, Malaponte G, Pennisi P, Li Volti G, Trovato G, Mangiafico M, et al. Increased formation of 8-iso-prostaglandin F(2alpha) is associated with altered bone metabolism and lower bone mass in hypercholesterolaemic subjects. J Intern Med 2007;261:587–96.Web of ScienceGoogle Scholar

  • 15.

    Maggio D, Barabani M, Pierandrei M, Polidori MC, Catani M, Mecocci P, et al. Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study. J Clin Endocrinol Metab 2003;88:1523–7.Google Scholar

  • 16.

    Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A. Biomarkers of oxidative damage in human disease. Clin Chem 2006;52:601–23.Google Scholar

  • 17.

    Sánchez-Rodríguez MA, Ruiz-Ramos M, Correa-Muñoz E, Mendoza-Núñez VM. Oxidative stress as a risk factor for osteoporosis in elderly Mexicans as characterized by antioxidant enzymes. BMC Musculoskelet Disord 2007;19:8–124.Web of ScienceGoogle Scholar

  • 18.

    Halliwell B, Gutteridge JM, editors. Free radicals in biology and medicine, 4th ed. Oxford: Oxford University Press, 2007:490.Google Scholar

  • 19.

    Galasko D, Montine TJ. Biomarkers of oxidative damage and inflammation in Alzheimer’s disease. Biomark Med 2010;4:27–36.Web of ScienceGoogle Scholar

  • 20.

    Santanam N, Shern-Brewer R, McClatchey R, Castellano PZ, Murphy AA, Voelkel S, et al. Estradiol as an antioxidant: incompatible with its physiological concentrations and function. J Lipid Res 1998;39:2111–8.Google Scholar

  • 21.

    Tang XL, Liu XJ, Tian Q, Zhang W. Dynamic oxidative stress and DNA damage induced by oestrogen deficiency and protective effects of puerarin and 17β-oestradiol in ovariectomized Rats. Basic Clin Pharmacol Toxicol 2012. [Epub ahead of print 14 Feb, 2012]. DOI: 10.1111/j.1742-7843.2012.00864.CrossrefWeb of ScienceGoogle Scholar

  • 22.

    Lean JM, Jagger CJ, Kirstein B, Fuller K, Chambers TJ. Hydrogen peroxide is essential for estrogen-deficiency bone loss and osteoclast formation. Endocrinology 2005;146:728–35.Google Scholar

  • 23.

    Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000;408:239–47.Google Scholar

  • 24.

    Kregel KC, Zhang HJ. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations Am J Physiol Regul Integr Comp Physiol 2007;292:18–36.Web of ScienceGoogle Scholar

  • 25.

    Almeida M, Han L, Martin-Millan M, Plotkin LI, Stewart SA, Roberson PK, et al. Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem 2007;282:27285–97.Web of ScienceGoogle Scholar

About the article

Corresponding author: Carlo Cervellati, PhD, Department of Biochemistry and Molecular Biology, University of Ferrara, Via Luigi Borsari, 46, 44100, Ferrara, Italy Phone: +39 3480399087, Fax: +39 0532454442


Received: 2012-02-14

Accepted: 2012-04-23

Published Online: 2012-05-23

Published in Print: 2013-02-01


Citation Information: Clinical Chemistry and Laboratory Medicine, Volume 51, Issue 2, Pages 333–338, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/cclm-2012-0095.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Chwan-Li Shen, Shu Wang, Shengping Yang, Michael D. Tomison, Mehrnaz Abbasi, Lei Hao, Sheyenne Scott, Md Shahjalal Khan, Amanda W. Romero, Carol K. Felton, and Huanbiao Mo
BMC Complementary and Alternative Medicine, 2018, Volume 18, Number 1
[2]
Jaana van Gastel, Jan Boddaert, Areta Jushaj, Richard T. Premont, Louis M. Luttrell, Jonathan Janssens, Bronwen Martin, and Stuart Maudsley
Ageing Research Reviews, 2018
[4]
F. Kheirat, H. Merzouk, A. Saidi Merzouk, S.A. Merzouk, and B. Belarbi
Science & Sports, 2017
[5]
NAN SUN, LI YANG, YINGBIN LI, HUA ZHANG, HONG CHEN, DUAN LIU, QINGNAN LI, and DEHONG CAI
International Journal of Molecular Medicine, 2013, Volume 32, Number 2, Page 485
[7]
Jakob Høgild Langdahl, Anja Lisbeth Frederiksen, Stinus Jørn Hansen, Per Heden Andersen, Knud Bonnet Yderstraede, Morten Dunø, John Vissing, and Morten Frost
Journal of Bone and Mineral Research, 2017
[8]
Yuhui Chen, He Cao, Dawei Sun, Changxin Lin, Liang Wang, Minjun Huang, Huaji Jiang, Zhongmin Zhang, Dadi Jin, Baiyu Zhang, and Xiaochun Bai
Journal of Healthcare Engineering, 2017, Volume 2017, Page 1
[9]
Yong Li, Chen Yu, Guangsi Shen, Guangfei Li, Junkang Shen, Youjia Xu, and Jianping Gong
Acta Biochimica et Biophysica Sinica, 2015, Volume 47, Number 4, Page 306
[10]
J. Zavar-Reza, H. Mozaffari-Khosravi, A. Dehghani, M. Azaraein, R. Ahmadi, D. Javidmehr, H. Yousefi, T. Barabadi, and F. Ahmadian
Journal of Biology and Today's World, 2014, Volume 3, Number 10
[11]
Alfonso Varela-López, Julio Ochoa, José Llamas-Elvira, Magdalena López-Frías, Elena Planells, MCarmen Ramirez-Tortosa, Cesar Ramirez-Tortosa, Francesca Giampieri, Maurizio Battino, and José Quiles
Nutrients, 2017, Volume 9, Number 3, Page 176
[12]
Xi Lu, Gemma Mestres, Vijay Singh, Pedram Effati, Jia-Fei Poon, Lars Engman, and Marjam Ott
Antioxidants, 2017, Volume 6, Number 1, Page 13
[13]
Yuta Sato, Noriko Ishihara, Daiji Nagayama, Atsuhito Saiki, and Ichiro Tatsuno
Molecular Genetics and Metabolism Reports, 2017, Volume 10, Page 56
[14]
Brian Knaeble and Seth Dutter
The American Statistician, 2017, Volume 71, Number 2, Page 97
[15]
Shi-ying Luo, Jing-feng Chen, Zhi-guo Zhong, Xiao-hua Lv, Ya-jun Yang, Jing-jing Zhang, and Liao Cui
Acta Pharmacologica Sinica, 2016, Volume 37, Number 10, Page 1370
[16]
Qiaozhen Zhou, Li Zhu, Dafeng Zhang, Ning Li, Qiao Li, Panpan Dai, Yixin Mao, Xumin Li, Jianfeng Ma, and Shengbin Huang
Disease Markers, 2016, Volume 2016, Page 1
[17]
Kok-Yong Chin and Soelaiman Ima-Nirwana
International Journal of Environmental Research and Public Health, 2016, Volume 13, Number 8, Page 755
[18]
Z. Ruhomally, J. Somanah, T. Bahorun, and V.S. Neergheen-Bhujun
Journal of Traditional and Complementary Medicine, 2016, Volume 6, Number 3, Page 299
[19]
Carlo Cervellati, Arianna Romani, Eleonora Cremonini, Carlo M. Bergamini, Enrica Fila, Monica Squerzanti, Pantaleo Greco, Leo Massari, and Gloria Bonaccorsi
Oxidative Medicine and Cellular Longevity, 2016, Volume 2016, Page 1
[21]
Gloria Bonaccorsi, Arianna Romani, Eleonora Cremonini, Carlo M. Bergamini, Maria Cristina Castaldini, Enrica Fila, Stefania Hanau, Leo Massari, and Carlo Cervellati
Taiwanese Journal of Obstetrics and Gynecology, 2015, Volume 54, Number 3, Page 290
[22]
A. Cagnacci, M. Cannoletta, F. Palma, M. Bellafronte, C. Romani, and B. Palmieri
Climacteric, 2015, Volume 18, Number 4, Page 631
[23]
Yong Li, Guangsi Shen, Chen Yu, Guangfei Li, Junkang Shen, Jianping Gong, and Youjia Xu
Biochemical and Biophysical Research Communications, 2014, Volume 455, Number 1-2, Page 113
[24]
Yue-Hua Yang, Bo Li, Xin-Feng Zheng, Jiang-Wei Chen, Ke Chen, Sheng-Dan Jiang, and Lei-Sheng Jiang
Free Radical Biology and Medicine, 2014, Volume 77, Page 10
[25]
Lidia Ibáñez, María Luisa Ferrándiz, Rita Brines, David Guede, Antonio Cuadrado, and Maria José Alcaraz
Oxidative Medicine and Cellular Longevity, 2014, Volume 2014, Page 1
[26]
Thomas L. Willett, Julia Pasquale, and Marc D. Grynpas
Current Osteoporosis Reports, 2014, Volume 12, Number 3, Page 329
[27]
Naroa Kajarabille, Javier Díaz-Castro, Silvia Hijano, Magdalena López-Frías, Inmaculada López-Aliaga, and Julio J. Ochoa
The Scientific World Journal, 2013, Volume 2013, Page 1

Comments (0)

Please log in or register to comment.
Log in