Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter / Tate, Jillian R.

12 Issues per year


IMPACT FACTOR 2016: 3.432

CiteScore 2016: 2.21

SCImago Journal Rank (SJR) 2016: 1.000
Source Normalized Impact per Paper (SNIP) 2016: 1.112

Online
ISSN
1437-4331
See all formats and pricing
More options …
Volume 51, Issue 4 (Apr 2013)

Issues

Suitability of quality control materials for prostate-specific antigen (PSA) measurement: inter-method variability of common tumor marker control materials

Zivjena Vucetic / Ann Dnistrian / Olle Nilsson / Hans G. Lilja / Mario Plebani
  • Corresponding author
  • Department of Laboratory Medicine, University-Hospital of Padova, Via Giustiniani, 2, 35128 Padova, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-01-08 | DOI: https://doi.org/10.1515/cclm-2012-0660

Abstract

Background: Quality control materials with minimal inter-assay differences and clinically relevant proportions of different molecular forms of the analyte are needed to optimize intra- and inter-laboratory accuracy and precision.

Methods: We assessed if clinically relevant total prostate-specific antigen (tPSA) levels were present in seven commercially available Multi Constituent Tumor Marker Controls (MC-TMC). Further, we determined the concentration of free PSA (fPSA) and calculated the percentage of free PSA (%fPSA) in all materials. Finally, we determined variability of TMC materials across several commonly used PSA platforms.

Results: All MC-TMC materials contained at least one concentration of tPSA in normal and pathologic range. Control materials varied in the amount of fPSA and %fPSA, with most controls consisting of fPSA only and only one MC-TMC containing medically relevant levels of around 35% fPSA. Only a minority of MC-TMC materials showed minimal variability across four PSA methods while the majority of PSA controls showed wide inter-method differences.

Conclusions: Use of many commercially available controls for PSA could lead to biased PSA measurements because they contain medically irrelevant proportions of fPSA and show significant variation among different PSA assay platforms.

This article offers supplementary material which is provided at the end of the article.

Keywords: commutability; free-PSA; internal quality control; inter-assay variation; prostate-specific antigen (PSA); quality control materials

References

  • 1.

    Lilja H, Ulmert D, Vickers AJ. Prostate-specific antigen and prostate cancer: prediction, detection and monitoring. Nat Rev Cancer 2008;8:268–78.CrossrefWeb of SciencePubMedGoogle Scholar

  • 2.

    Lilja H, Christensson A, Dahlen U, Matikainen MT, Nilsson O, Pettersson K, et al. Prostate-specific antigen in serum occurs predominantly in complex with alpha 1-antichymotrypsin. Clin Chem 1991;37:1618–25.PubMedGoogle Scholar

  • 3.

    Stenman UH, Leinonen J, Alfthan H, Rannikko S, Tuhkanen K, Alfthan O. A complex between prostate-specific antigen and alpha 1-antichymotrypsin is the major form of prostate-specific antigen in serum of patients with prostatic cancer: assay of the complex improves clinical sensitivity for cancer. Cancer Res 1991;51:222–6.PubMedGoogle Scholar

  • 4.

    Lilja H, Ulmert D, Bjork T, Becker C, Serio AM, Nilsson JA, et al. Long-term prediction of prostate cancer up to 25 years before diagnosis of prostate cancer using prostate kallikreins measured at age 44 to 50 years. J Clin Oncol 2007;25: 431–6.CrossrefGoogle Scholar

  • 5.

    Stephan C, Kopke T, Semjonow A, Lein M, Deger S, Schrader M, et al. Discordant total and free prostate-specific antigen (PSA) assays: does calibration with WHO reference materials diminish the problem? Clin Chem Lab Med 2009;47:1325–31.PubMedWeb of ScienceGoogle Scholar

  • 6.

    Roddam AW, Rimmer J, Nickerson C, Ward AM. Prostate-specific antigen: bias and molarity of commercial assays for PSA in use in England. Ann Clin Biochem 2006;43:35–48.PubMedCrossrefGoogle Scholar

  • 7.

    Slev PR, La’ulu SL, Roberts WL. Intermethod differences in results for total PSA, free PSA, and percentage of free PSA. Am J Clin Pathol 2008;129:952–8.Web of ScienceGoogle Scholar

  • 8.

    Sokoll LJ, Witte DL, Klee GG, Chan DW. Redesigned proficiency testing materials improve survey outcomes for prostate-specific antigen. A College of American Pathologists Ligand Assay Survey tool. Arch Pathol Lab Med 2000;124: 1608–13.Google Scholar

  • 9.

    Schimmel H, Zegers I, Emons H. Standardization of protein biomarker measurements: is it feasible? Scand J Clin Lab Invest Suppl 2010;242:27–33.Google Scholar

  • 10.

    Sturgeon CM. Tumor markers in the laboratory: closing the guideline-practice gap. Clin Biochem 2001;34:353–9.CrossrefGoogle Scholar

  • 11.

    Franzini C, Ceriotti F. Impact of reference materials on accuracy in clinical chemistry. Clin Biochem 1998;31:449–57.PubMedCrossrefGoogle Scholar

  • 12.

    Sturgeon CM, Hoffman BR, Chan DW, Ch’ng SL, Hammond E, Hayes DF, et al. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines for use of tumor markers in clinical practice: quality requirements. Clin Chem 2008;54:e1–10.CrossrefGoogle Scholar

  • 13.

    Roddam AW, Duffy MJ, Hamdy FC, Ward AM, Patnick J, Price CP, et al. Use of prostate-specific antigen (PSA) isoforms for the detection of prostate cancer in men with a PSA level of 2–10 ng/ml: systematic review and meta-analysis. Eur Urol 2005;48:386–99; discussion 98–9.CrossrefGoogle Scholar

  • 14.

    Fox MP, Reilly AA, Schneider E. Effect of the ratio of free to total prostate-specific antigen on interassay variability in proficiency test samples. Clin Chem 1999;45:1181–9.PubMedGoogle Scholar

  • 15.

    Schreiber WE, Endres DB, McDowell GA, Palomaki GE, Elin RJ, Klee GG, et al. Comparison of fresh frozen serum to proficiency testing material in College of American Pathologists surveys: alpha-fetoprotein, carcinoembryonic antigen, human chorionic gonadotropin, and prostate-specific antigen. Arch Pathol Lab Med 2005;129:331–7.Google Scholar

  • 16.

    Zambon CF, Prayer-Galetti T, Basso D, Padoan A, Rossi E, Secco S, et al. Effectiveness of the combined evaluation of KLK3 genetics and free-to-total prostate specific antigen ratio for prostate cancer diagnosis. J Urol 2012;188:1124–30.Web of ScienceGoogle Scholar

  • 17.

    Ulmert D, Becker C, Nilsson JA, Piironen T, Bjork T, Hugosson J, et al. Reproducibility and accuracy of measurements of free and total prostate-specific antigen in serum vs. plasma after long-term storage at −20 degrees C. Clin Chem 2006;52:235–9.Google Scholar

  • 18.

    Bretaudiere JP, Dumont G, Rej R, Bailly M. Suitability of control materials. General principles and methods of investigation. Clin Chem 1981;27:798–805.PubMedGoogle Scholar

  • 19.

    Whicher JT. Calibration is the key to immunoassay but the ideal calibrator is unattainable. Scand J Clin Lab Invest Suppl 1991;205:21–32.Google Scholar

  • 20.

    Strobel S, Smith K, Wolfert R, Rittenbouse H. Role of free PSA in discordance across commercial PSA assays. Clin Chem 1996;42:645–7.PubMedGoogle Scholar

  • 21.

    Datta P, Foster K, Dasgupta A. Comparison of immunoreactivity of five human cardiac troponin I assays toward free and complexed forms of the antigen: implications for assay discordance. Clin Chem 1999;45:2266–9.PubMedGoogle Scholar

  • 22.

    Gilson G, Schmit P, Thix J, Hoffman JP, Humbel RL. Prolactin results for samples containing macroprolactin are method and sample dependent. Clin Chem 2001;47:331–3.PubMedGoogle Scholar

  • 23.

    Satterfield MB, Welch MJ. Comparison by LC-MS and MALDI-MS of prostate-specific antigen from five commercial sources with certified reference material 613. Clin Biochem 2005;38:166–74.PubMedGoogle Scholar

  • 24.

    Sturgeon CM, Ellis AR. Improving the comparability of immunoassays for prostate-specific antigen (PSA): progress and problems. Clin Chim Acta 2007;381:85–92.Web of ScienceGoogle Scholar

  • 25.

    Dominici R, Cabrini E, Cattozzo G, Ceriotti F, Grazioli V, Scapellato L, et al. Intermethod variation in serum carcinoembryonic antigen (CEA) measurement. Fresh serum pools and control materials compared. Clin Chem Lab Med 2002;40: 167–73.PubMedGoogle Scholar

  • 26.

    van Helden WC, Visser RW, Van den Bergh FA, Souverijn JH. Comparison of intermethod analytical variability of patient sera and commercial quality control sera. Clin Chim Acta 1979;93:335–47.Google Scholar

  • 27.

    Cattozzo G, Fabi A, Franzini C. Intermethod variability of sodium and potassium results: patients’ sera and commercially available control sera. Eur J Clin Chem Clin Biochem 1997;35:387–92.PubMedGoogle Scholar

  • 28.

    Cattozzo G, Franzini C, d’Eril GV. Myoglobin and creatine kinase isoenzyme MB mass assays: intermethod behaviour of patient sera and commercially available control materials. Clin Chim Acta 2001;303:55–60.Google Scholar

  • 29.

    Eckfeldt JH, Copeland KR. Accuracy verification and identification of matrix effects. The College of American Pathologists’ Protocol. Arch Pathol Lab Med 1993;117:381–6.Google Scholar

  • 30.

    Lawson NS, Williams TL, Long T. Matrix effects and accuracy assessment. Identifying matrix-sensitive methods from real-time proficiency testing data. Arch Pathol Lab Med 1993;117:401–11.Google Scholar

  • 31.

    Miller WG. Specimen materials, target values and commutability for external quality assessment (proficiency testing) schemes. Clin Chim Acta 2003;327:25–37.Google Scholar

  • 32.

    Sanchez M, Canalias F, Palencia T, Gella FJ. Creatine kinase 2 mass measurement: methods comparison and study of the matrix effect. Clin Chim Acta 1999;288:111–9.Google Scholar

About the article

Corresponding author: Dr. Mario Plebani, Department of Laboratory Medicine, University-Hospital of Padova, Via Giustiniani, 2, 35128 Padova, Italy, Fax: +39 049 663240


Received: 2012-10-01

Accepted: 2012-12-05

Published Online: 2013-01-08

Published in Print: 2013-04-01


Citation Information: Clinical Chemistry and Laboratory Medicine, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/cclm-2012-0660.

Export Citation

©2013 by Walter de Gruyter Berlin Boston. Copyright Clearance Center

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Behfar Ehdaie, Bing Ying Poon, Daniel D. Sjoberg, Pedro Recabal, Vincent Laudone, Karim Touijer, James Eastham, and Peter T. Scardino
BJU International, 2016, Volume 118, Number 4, Page 535

Comments (0)

Please log in or register to comment.
Log in