Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter / Tate, Jillian R.

12 Issues per year


IMPACT FACTOR 2016: 3.432

CiteScore 2016: 2.21

SCImago Journal Rank (SJR) 2016: 1.000
Source Normalized Impact per Paper (SNIP) 2016: 1.112

Online
ISSN
1437-4331
See all formats and pricing
More options …
Volume 51, Issue 8 (Aug 2013)

Issues

Folic acid supplementation does not reduce intracellular homocysteine, and may disturb intracellular one-carbon metabolism

Desirée E.C. Smith
  • Department Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
  • Desirée E.C. Smith and Jacqueline M. Hornstra contributed equally to the article.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jacqueline M. Hornstra
  • Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
  • Desirée E.C. Smith and Jacqueline M. Hornstra contributed equally to the article.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Robert M. Kok / Henk J. Blom
  • Department Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
  • Institute for Cardiovascular Research, ICaR-VU, VU University Medical Center, Amsterdam, The Netherlands
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yvo M. Smulders
  • Corresponding author
  • Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
  • Institute for Cardiovascular Research, ICaR-VU, VU University Medical Center, Amsterdam, The Netherlands
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-06-01 | DOI: https://doi.org/10.1515/cclm-2012-0694

Abstract

Background: In randomized trails, folic acid (FA) lowered plasma homocysteine, but failed to reduce cardiovascular risk. We hypothesize this is due to a discrepancy between plasma and intracellular effects of FA.

Methods: In a double-blind trial, 50 volunteers were randomized to received 500 µg FA daily for 8 weeks, or placebo. Plasma and peripheral blood mononuclear cell (PBMC) concentrations of homocysteine, S-adenosylmethionine (SAM), S-adenosylhomocysteine, methionine, cystathionine and 5-methyltetrahydrofolate (bioactive folate) were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). PBMCs were used as a cellular model since they display the full spectrum of one-carbon (1C) enzymes and reactions.

Results: At baseline, plasma concentrations were a poor reflection of intracellular concentrations for most 1C metabolites, except 5-methyltetrahydrofolate (R=0.33, p=0.02), homocysteine (Hcy) (R=0.35, p=0.01), and cystathionine (R=0.45, p=0.001). FA significantly lowered plasma homocysteine (p=0.00), but failed to lower intracellular homocysteine or change the concentrations of any of the other PBMC 1C metabolites. At baseline, PBMC homocysteine concentrations correlated to PBMC SAM. After FA supplementation, PBMC homocysteine no longer correlated with PBMC SAM, suggesting a loss of SAM’s regulatory function. In vitro experiments in lymphoblasts confirmed that at higher folate substrate concentrations, physiological concentrations of SAM no longer effectively inhibit the key regulatory enzyme methylenetetrahydrofolate reductase (MTHFR).

Conclusions: FA supplementation does not reduce intracellular concentrations of Hcy or any of its closely related substances. Rather, FA may disturb physiological regulation of intracellular 1C metabolism by interfering with SAM’s inhibitory effect on MTHFR activity.

Keywords: cardiovascular disease; folate; homocysteine; intracellular concentrations; S-adenosylmethionine

References

  • 1.

    Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. J Am Med Assoc 2002;288:2015–22.Google Scholar

  • 2.

    McCully KS. Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol 1969;56:111–28.Google Scholar

  • 3.

    Shaw GM, Schaffer D, Velie EM, Morland K, Harris JA. Periconceptional vitamin use, dietary folate, and the occurrence of neural tube defects. Epidemiology 1995;6:219–26.CrossrefPubMedGoogle Scholar

  • 4.

    Clarke R, Halsey J, Bennett D, Lewington S. Homocysteine and vascular disease: review of published results of the homocysteine-lowering trials. J Inherit Metab Dis 2011;34: 83–91.Web of ScienceGoogle Scholar

  • 5.

    Smulders YM, Blom HJ. The homocysteine controversy. J Inherit Metab Dis 2011;34:93–9.Web of SciencePubMedCrossrefGoogle Scholar

  • 6.

    Finkelstein JD. The metabolism of homocysteine: pathways and regulation. Eur J Pediatr 1998;157:S40–4.Google Scholar

  • 7.

    Finkelstein JD. Methionine metabolism in mammals. J Nutr Biochem 1990;1:228–37.Google Scholar

  • 8.

    Kerins DM, Koury MJ, Capdevila A, Rana S, Wagner C. Plasma S-adenosylhomocysteine is a more sensitive indicator of cardiovascular disease than plasma homocysteine. Am J Clin Nutr 2001;74:723–9.PubMedGoogle Scholar

  • 9.

    Green TJ, Skeaff CM, McMahon JA, Venn BJ, Williams SM, Devlin AM, etal. Homocysteine-lowering vitamins do not lower plasma S-adenosylhomocysteine in older people with elevated homocysteine concentrations. Br J Nutr 2010;103:1629–34.Google Scholar

  • 10.

    Becker A, Smulders YM, Teerlink T, Struys EA, de MK, Kostense PJ, etal. S-adenosylhomocysteine and the ratio of S-adenosylmethionine to S-adenosylhomocysteine are not related to folate, cobalamin and vitamin B6 concentrations. Eur J Clin Invest 2003;33:17–25.CrossrefGoogle Scholar

  • 11.

    Caudill MA, Wang JC, Melnyk S, Pogribny IP, Jernigan S, Collins MD, etal. Intracellular S-adenosylhomocysteine concentrations predict global DNA hypomethylation in tissues of methyl-deficient cystathionine beta-synthase heterozygous mice. J Nutr 2001;131:2811–8.Google Scholar

  • 12.

    Yi P, Melnyk S, Pogribna M, Pogribny IP, Hine RJ, James SJ. Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation. J Biol Chem 2000;275:29318–23.Google Scholar

  • 13.

    Huang Y, Lu ZY, Brown KS, Whitehead AS, Blair IA. Quantification of intracellular homocysteine by stable isotope dilution liquid chromatography/tandem mass spectrometry. Biomed Chromatogr 2007;21:107–12.PubMedCrossrefGoogle Scholar

  • 14.

    Deguchi T, Barchas J. Inhibition of transmethylations of biogenic amines by S-adenosylhomocysteine. Enhancement of transmethylation by adenosylhomocysteinase. J Biol Chem 1971;246:3175–81.Google Scholar

  • 15.

    Struys EA, Jansen EE, de Meer K, Jakobs C. Determination of S-adenosylmethionine and S-adenosylhomocysteine in plasma and cerebrospinal fluid by stable-isotope dilution tandem mass spectrometry. Clin Chem 2000;46:1650–6.PubMedGoogle Scholar

  • 16.

    Smith DE, Kok RM, Teerlink T, Jakobs C, Smulders YM. Quantitative determination of erythrocyte folate vitamer distribution by liquid chromatography-tandem mass spectrometry. Clin Chem Lab Med 2006;44:450–9.PubMedGoogle Scholar

  • 17.

    Kok RM, Smith DE, Barto R, Spijkerman AM, Teerlink T, Gellekink HJ, etal. Global DNA methylation measured by liquid chromatography-tandem mass spectrometry: analytical technique, reference values and determinants in healthy subjects. Clin Chem Lab Med 2007;45:903–11.Google Scholar

  • 18.

    Steed MM, Tyagi SC. Mechanisms of cardiovascular remodeling in hyperhomocysteinemia. Antioxid Redox Signal 2011;15:1927–43.PubMedGoogle Scholar

  • 19.

    Ashfield-Watt PA, Moat SJ, Doshi SN, McDowell IF. Folate, homocysteine, endothelial function and cardiovascular disease. What is the link? Biomed Pharmacother 2001;55: 425–33.CrossrefGoogle Scholar

  • 20.

    Medina M, Urdiales JL, Mores-Sanchez MI. Roles of homocysteine in cell metabolism: old and new functions. Eur J Biochem 2001;268:3871–82.Google Scholar

  • 21.

    Melnyk S, Pogribna M, Pogribny IP, Yi P, James SJ. Measurement of plasma and intracellular S-adenosylmethionine and S-adenosylhomocysteine utilizing coulometric electrochemical detection: alterations with plasma homocysteine and pyridoxal 5’-phosphate concentrations. Clin Chem 2000;46:265–72.PubMedGoogle Scholar

  • 22.

    Antoniades C, Shirodaria C, Leeson P, Baarholm OA, Van-Assche T, Cunnington C, etal. MTHFR 677 C>T Polymorphism reveals functional importance for 5-methyltetrahydrofolate, not homocysteine, in regulation of vascular redox state and endothelial function in human atherosclerosis. Circulation 2009;119:2507–15.Web of ScienceGoogle Scholar

  • 23.

    Stead LM, Brosnan ME, Brosnan JT. Characterization of homocysteine metabolism in the rat liver. Biochem J 2000;350:685–92.Google Scholar

  • 24.

    Jung AY, Smulders Y, Verhoef P, Kok FJ, Blom H, Kok RM, etal. No effect of folic acid supplementation on global DNA methylation in men and women with moderately elevated homocysteine. PLoS One 2011;6:e24976.CrossrefWeb of ScienceGoogle Scholar

  • 25.

    Finkelstein JD. Metabolic regulatory properties of S-adenosylmethionine and S-adenosylhomocysteine. Clin Chem Lab Med 2007;45:1694–9.PubMedWeb of ScienceGoogle Scholar

  • 26.

    Stam F, Smulders YM, van Guldener C, Jakobs C, Stehouwer CD, de Meer K. Folic acid treatment increases homocysteine remethylation and methionine transmethylation in healthy subjects. Clin Sci (Lond) 2005;108:449–56.PubMedGoogle Scholar

  • 27.

    Ross J, Green J, Baugh CM, MacKenzie RE, Matthews RG. Studies on the polyglutamate specificity of methylenetetrahydrofolate dehydrogenase from pig liver. Biochemistry 1984;23:1796–801.PubMedCrossrefGoogle Scholar

  • 28.

    van der Molen EF, Hiipakka MJ, van Lith-Zanders H, Boers GH, van den Heuvel LP, Monnens LA, etal. Homocysteine metabolism in endothelial cells of a patient homozygous for cystathionine beta-synthase (CS) deficiency. Thromb Haemost 1997;78:827–33.Google Scholar

About the article

Corresponding author: Prof. Dr. Yvo M. Smulders, Department of Internal Medicine, VU University Medical Center, De Boelelaan 1117, 1007 MB Amsterdam, The Netherlands, Phone: +31 20 4444307, Fax: +31 20 4444313


Received: 2012-10-12

Accepted: 2012-12-25

Published Online: 2013-06-01

Published in Print: 2013-08-01


Citation Information: Clinical Chemistry and Laboratory Medicine, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/cclm-2012-0694.

Export Citation

©2013 by Walter de Gruyter Berlin Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Henrieta Škovierová, Eva Vidomanová, Silvia Mahmood, Janka Sopková, Anna Drgová, Tatiana Červeňová, Erika Halašová, and Ján Lehotský
International Journal of Molecular Sciences, 2016, Volume 17, Number 10, Page 1733
[2]
David Kennedy
Nutrients, 2016, Volume 8, Number 2, Page 68
[3]
Hsin-Hung Lin, Hung-Hsiang Liou, Ming-Shiou Wu, Ching-Yuang Lin, and Chiu-Ching Huang
Nephrology, 2014, Volume 19, Number 11, Page 672
[4]
Esther K. Lee, Maria Carmen Riesco Martinez, Kim Blakely, Keemo Delos Santos, Van C. Hoang, Annabelle Chow, and Urban Emmenegger
Medical Hypotheses, 2014, Volume 83, Number 4, Page 482
[5]
Despoina Gkentzi, Alexandra Efthymiadou, Dimitra Kritikou, and Dionisios Chrysis
Bone, 2014, Volume 66, Page 8

Comments (0)

Please log in or register to comment.
Log in