Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter / Tate, Jillian R.

12 Issues per year

IMPACT FACTOR 2016: 3.432

CiteScore 2016: 2.21

SCImago Journal Rank (SJR) 2016: 1.000
Source Normalized Impact per Paper (SNIP) 2016: 1.112

See all formats and pricing
More options …
Volume 52, Issue 1 (Jan 2014)


Advanced glycation end-products induce endoplasmic reticulum stress in human aortic endothelial cells

Christos Adamopoulos / Elena Farmaki / Eliana Spilioti / Hippokratis Kiaris / Christina Piperi / Athanasios G. Papavassiliou
Published Online: 2013-03-02 | DOI: https://doi.org/10.1515/cclm-2012-0826


Background: Advanced glycation end products (AGEs), the final products of the Maillard reaction, have been shown to impair endothelial proliferation and function, thus contributing to endothelial cell injury present in diabetes, inflammatory and cardiovascular diseases. Endoplasmic reticulum (ER) stress triggered under hyperglycemic, hypoxic and oxidative conditions has been implicated in endothelial dysfunction through activation of the unfolded protein response (UPR). The present study investigates the role of AGEs in ER stress induction in human aortic endothelial cells exposed to variable AGE treatments.

Methods: Human aortic endothelial cells (HAEC) were treated with increasing concentrations (100, 200 μg/mL) of AGE-bovine serum albumin (AGE-BSA) at different time-points (24, 48, 72 h). The induction of ER stress and the involved UPR components were investigated on mRNA and protein levels. Apoptosis was quantitatively determined by flow cytometry detecting propidium iodide expression and annexin V binding simultaneously.

Results: AGEs administration significantly reduced HAEC proliferation in a time- and dose-dependent manner. An immediate induction of the ER chaperones GRP78, GRP94 and the transcriptional activator, XBP-1 was observed at 24 h and 48 h. A later induction of the phospho-elF2α and proapoptotic transcription factor CHOP was observed at 48 h and 72 h, being correlated with elevated early apoptotic cell numbers at the same time-points.

Conclusions: The present study demonstrates that AGEs directly induce ER stress in human aortic endothelial cells, playing an important role in endothelial cell apoptosis. Targeting AGEs signaling pathways in order to alleviate ER stress may prove of therapeutic potential to endothelial dysfunction-related disorders.

Keywords: advanced glycation end-products (AGEs); apoptosis; endoplasmic reticulum (ER) stress; human aortic endothelial cells; unfolded protein response (UPR)


  • 1.

    Brownlee M. Advanced protein glycosylation in diabetes and aging. Annu Rev Med 1995;46:223–34.CrossrefPubMedGoogle Scholar

  • 2.

    Degenhardt TP, Thorpe SR, Baynes JW. Chemical modification of proteins by methylglyoxal. Cell Mol Biol (Noisy-le-grand) 1998;44:1139–45.Google Scholar

  • 3.

    Bierhaus A, Hofmann MA, Ziegler R, Nawroth PP. AGEs and their interaction with AGE-receptors in vascular disease and diabetes mellitus. I. The AGE concept. Cardiovasc Res 1998;37:586–600.CrossrefPubMedGoogle Scholar

  • 4.

    Diamanti-Kandarakis E, Piperi C, Kalofoutis A, Creatsas G. Increased levels of serum advanced glycation end-products in women with polycystic ovary syndrome. Clin Endocrinol (Oxf) 2005;62:37–43.CrossrefGoogle Scholar

  • 5.

    Li J, Liu D, Sun L, Lu Y, Zhang Z. Advanced glycation end products and neurodegenerative diseases: mechanisms and perspective. J Neurol Sci 2012;317:1–5.Web of ScienceGoogle Scholar

  • 6.

    Barlovic DP, Thomas MC, Jandeleit-Dahm K. Cardiovascular disease: what’s all the AGE/RAGE about? Cardiovasc Hematol Disord Drug Targets 2010;10:7–15.PubMedGoogle Scholar

  • 7.

    Uribarri J, Cai W, Peppa M, Goodman S, Ferrucci L, Striker G, et al. Circulating glycotoxins and dietary advanced glycation endproducts: two links to inflammatory response, oxidative stress, and aging. J Gerontol A Biol Sci Med Sci 2007;62:427–33.Web of SciencePubMedCrossrefGoogle Scholar

  • 8.

    Gursinsky T, Ruhs S, Friess U, Diabate S, Krug HF, Silber RE, et al. Air pollution-associated fly ash particles induce fibrotic mechanisms in primary fibroblasts. Biol Chem 2006;387: 1411–20.Google Scholar

  • 9.

    Schalkwijk CG, Miyata T. Early- and advanced non-enzymatic glycation in diabetic vascular complications: the search for therapeutics. Amino Acids 2012;42:1193–204.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 10.

    Li H, Zhang X, Guan X, Cui X, Wang Y, Chu H, et al. Advanced glycation end products impair the migration, adhesion and secretion potentials of late endothelial progenitor cells. Cardiovasc Diabetol 2012;11:46.CrossrefWeb of SciencePubMedGoogle Scholar

  • 11.

    Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 2006;114:597–605.PubMedCrossrefGoogle Scholar

  • 12.

    Madonna R, De Caterina R. Cellular and molecular mechanisms of vascular injury in diabetes – part II: cellular mechanisms and therapeutic targets. Vascul Pharmacol 2011;54:75–9.PubMedCrossrefGoogle Scholar

  • 13.

    Zhou YJ, Yang HW, Wang XG, Zhang H. Hepatocyte growth factor prevents advanced glycation end products-induced injury and oxidative stress through a PI3K/Akt-dependent pathway in human endothelial cells. Life Sci 2009;85: 670–7.CrossrefWeb of ScienceGoogle Scholar

  • 14.

    Xiang M, Yang M, Zhou C, Liu J, Li W, Qian Z. Crocetin prevents AGEs-induced vascular endothelial cell apoptosis. Pharmacol Res 2006;54:268–74.PubMedCrossrefGoogle Scholar

  • 15.

    Chen J, Song M, Yu S, Gao P, Yu Y, Wang H, et al. Advanced glycation endproducts alter functions and promote apoptosis in endothelial progenitor cells through receptor for advanced glycation endproducts mediate overpression of cell oxidant stress. Mol Cell Biochem 2010;335:137–46.Google Scholar

  • 16.

    Oba T, Tatsunami R, Sato K, Takahashi K, Hao Z, Tampo Y. Methylglyoxal has deleterious effects on thioredoxin in human aortic endothelial cells. Environ Toxicol Pharmacol 2012;34: 117–26.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 17.

    Finkel E. The mitochondrion: is it central to apoptosis? Science 2001;292:624–6.Google Scholar

  • 18.

    Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 2000;403:98–103.Google Scholar

  • 19.

    Gorlach A, Klappa P, Kietzmann T. The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxid Redox Signal 2006;8:1391–418.PubMedGoogle Scholar

  • 20.

    Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 2007;8: 519–29.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 21.

    Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2000;2:326–32.PubMedGoogle Scholar

  • 22.

    Hetz C, Glimcher LH. Fine-tuning of the unfolded protein response: assembling the IRE1alpha interactome. Mol Cell 2009;35:551–61.CrossrefGoogle Scholar

  • 23.

    Chaube R, Kallakunta VM, Espey MG, McLarty R, Faccenda A, Ananvoranich S, et al. Endoplasmic reticulum stress-mediated inhibition of NSMase2 elevates plasma membrane cholesterol and attenuates NO production in endothelial cells. Biochim Biophys Acta 2012;1821:313–23.Web of ScienceGoogle Scholar

  • 24.

    Tabas I. The role of endoplasmic reticulum stress in the progression of atherosclerosis. Circ Res 2010;107:839–50.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 25.

    Chen Y, Liu CP, Xu KF, Mao XD, Lu YB, Fang L, et al. Effect of taurine-conjugated ursodeoxycholic acid on endoplasmic reticulum stress and apoptosis induced by advanced glycation end products in cultured mouse podocytes. Am J Nephrol 2008;28:1014–22.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 26.

    Yin QQ, Dong CF, Dong SQ, Dong XL, Hong Y, Hou XY, et al. AGEs induce cell death via oxidative and endoplasmic reticulum stresses in both human SH-SY5Y neuroblastoma cells and rat cortical neurons. Cell Mol Neurobiol 2012;32:1299–309.CrossrefWeb of ScienceGoogle Scholar

  • 27.

    Kassi E, Papoutsi Z, Pratsinis H, Aligiannis N, Manoussakis M, Moutsatsou P. Ursolic acid, a naturally occurring triterpenoid, demonstrates anticancer activity on human prostate cancer cells. J Cancer Res Clin Oncol 2007;133:493–500.Web of ScienceGoogle Scholar

  • 28.

    Dioufa N, Kassi E, Papavassiliou AG, Kiaris H. Atypical induction of the unfolded protein response by mifepristone. Endocrine 2010;38:167–73.CrossrefWeb of SciencePubMedGoogle Scholar

  • 29.

    Basha B, Samuel SM, Triggle CR, Ding H. Endothelial dysfunction in diabetes mellitus: possible involvement of endoplasmic reticulum stress? Exp Diabetes Res 2012;2012:481840.PubMedGoogle Scholar

  • 30.

    Tan KC, Chow WS, Ai VH, Metz C, Bucala R, Lam KS. Advanced glycation end products and endothelial dysfunction in type 2 diabetes. Diabetes Care 2002;25:1055–9.Web of ScienceCrossrefPubMedGoogle Scholar

  • 31.

    Bucala R, Tracey KJ, Cerami A. Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. J Clin Invest 1991;87:432–8.PubMedCrossrefGoogle Scholar

  • 32.

    Xu B, Chibber R, Ruggiero D, Kohner E, Ritter J, Ferro A. Impairment of vascular endothelial nitric oxide synthase activity by advanced glycation end products. FASEB J 2003;17: 1289–91.PubMedGoogle Scholar

  • 33.

    Rojas A, Romay S, Gonzalez D, Herrera B, Delgado R, Otero K. Regulation of endothelial nitric oxide synthase expression by albumin-derived advanced glycosylation end products. Circ Res 2000;86:E50–4.CrossrefPubMedGoogle Scholar

  • 34.

    Yamagishi S, Fujimori H, Yonekura H, Yamamoto Y, Yamamoto H. Advanced glycation endproducts inhibit prostacyclin production and induce plasminogen activator inhibitor-1 in human microvascular endothelial cells. Diabetologia 1998;41:1435–41.PubMedCrossrefGoogle Scholar

  • 35.

    Quehenberger P, Bierhaus A, Fasching P, Muellner C, Klevesath M, Hong M, et al. Endothelin 1 transcription is controlled by nuclear factor-kappaB in AGE-stimulated cultured endothelial cells. Diabetes 2000;49:1561–70.Google Scholar

  • 36.

    Bierhaus A, Illmer T, Kasper M, Luther T, Quehenberger P, Tritschler H, et al. Advanced glycation end product (AGE)-mediated induction of tissue factor in cultured endothelial cells is dependent on RAGE. Circulation 1997;96:2262–71.CrossrefPubMedGoogle Scholar

  • 37.

    Basta G, Schmidt AM, De Caterina R. Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res 2004;63:582–92.PubMedCrossrefGoogle Scholar

  • 38.

    Sun C, Liang C, Ren Y, Zhen Y, He Z, Wang H, et al. Advanced glycation end products depress function of endothelial progenitor cells via p38 and ERK 1/2 mitogen-activated protein kinase pathways. Basic Res Cardiol 2009;104:42–9.Web of ScienceGoogle Scholar

  • 39.

    Zhang K. Integration of ER stress, oxidative stress and the inflammatory response in health and disease. Int J Clin Exp Med 2010;3:33–40.PubMedGoogle Scholar

  • 40.

    Witte I, Horke S. Assessment of endoplasmic reticulum stress and the unfolded protein response in endothelial cells. Methods Enzymol 2011;489:127–46.Web of ScienceGoogle Scholar

  • 41.

    Sheikh-Ali M, Sultan S, Alamir AR, Haas MJ, Mooradian AD. Hyperglycemia-induced endoplasmic reticulum stress in endothelial cells. Nutrition 2010;26:1146–50.Web of ScienceCrossrefGoogle Scholar

  • 42.

    Rasheed Z, Haqqi TM. Endoplasmic reticulum stress induces the expression of COX-2 through activation of eIF2alpha, p38-MAPK and NF-kappaB in advanced glycation end products stimulated human chondrocytes. Biochim Biophys Acta 2012;1823: 2179–89.Web of ScienceGoogle Scholar

  • 43.

    Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 2002;415:92–6.Google Scholar

  • 44.

    Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 2001;107:881–91.Google Scholar

  • 45.

    Lee AH, Iwakoshi NN, Glimcher LH. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 2003;23:7448–59.Google Scholar

  • 46.

    Harding HP, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 1999;397:271–4.Google Scholar

  • 47.

    Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 1998;12:982–95.CrossrefPubMedGoogle Scholar

  • 48.

    Loughlin DT, Artlett CM. Precursor of advanced glycation end products mediates ER-stress-induced caspase-3 activation of human dermal fibroblasts through NAD(P)H oxidase 4. PLoS One 2010;5:e11093.Web of ScienceCrossrefGoogle Scholar

  • 49.

    Inagi R. Inhibitors of advanced glycation and endoplasmic reticulum stress. Methods Enzymol 2011;491:361–80.Web of ScienceGoogle Scholar

  • 50.

    Piperi C, Adamopoulos C, Dalagiorgou G, Diamanti-Kandarakis E, Papavassiliou AG. Crosstalk between advanced glycation and endoplasmic reticulum stress: emerging therapeutic targeting for metabolic diseases. J Clin Endocrinol Metab 2012;97:2231–42.PubMedWeb of ScienceCrossrefGoogle Scholar

About the article

Corresponding author: Assistant Professor Christina Piperi, PhD, Department of Biological Chemistry, Medical School, University of Athens, 75, M. Asias Street, 11527 Athens, Greece, Phone: +30 210 7462610, Fax: +30 210 8037372, E-mail:

Received: 2012-11-29

Accepted: 2013-02-07

Published Online: 2013-03-02

Published in Print: 2014-01-01

Citation Information: Clinical Chemistry and Laboratory Medicine, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/cclm-2012-0826.

Export Citation

©2014 by Walter de Gruyter Berlin Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Zhuqing Rao, Jie Sun, Xiongxiong Pan, Ziyang Chen, Heliang Sun, Panpan Zhang, Mei Gao, Zhengnian Ding, and Cunming Liu
Frontiers in Immunology, 2017, Volume 8
Hedyieh Karbasforooshan and Gholamreza Karimi
Biomedicine & Pharmacotherapy, 2017, Volume 90, Page 386
Alexandria Hughes, Alexandra Oxford, Ken Tawara, Cheryl Jorcyk, and Julia Oxford
International Journal of Molecular Sciences, 2017, Volume 18, Number 3, Page 665
Kuo-Cheng Lan, Chen-Yuan Chiu, Chia-Wei Kao, Kuo-How Huang, Ching-Chia Wang, Kuo-Tong Huang, Keh-Sung Tsai, Meei-Ling Sheu, Shing Hwa Liu, and Garyfalia Drossopoulou
PLOS ONE, 2015, Volume 10, Number 4, Page e0124418
Chodisetty Sarvani, Dornadula Sireesh, and Kunka Mohanram Ramkumar
Pharmacological Research, 2017, Volume 119, Page 412
Christina Piperi
Current Nutrition Reports, 2017, Volume 6, Number 1, Page 1
Yunzhou Dong, Conrad Fernandes, Yanjun Liu, Yong Wu, Hao Wu, Megan L Brophy, Lin Deng, Kai Song, Aiyun Wen, Scott Wong, Daoguang Yan, Rheal Towner, and Hong Chen
Diabetes and Vascular Disease Research, 2017, Volume 14, Number 1, Page 14
Bo Wang, Zhejun Cai, Baoqing Liu, Zongtao Liu, Xianming Zhou, Nianguo Dong, and Fei Li
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2017, Volume 1863, Number 3, Page 781
Reiko Inagi
Glycoconjugate Journal, 2016, Volume 33, Number 4, Page 619
Christos Adamopoulos, Chrysovalantou Mihailidou, Christofora Grivaki, Kostas A. Papavassiliou, Hippokratis Kiaris, Christina Piperi, and Athanasios G. Papavassiliou
Glycoconjugate Journal, 2016, Volume 33, Number 4, Page 537
Christina Piperi, Christos Adamopoulos, and Athanasios G. Papavassiliou
Trends in Endocrinology & Metabolism, 2016, Volume 27, Number 3, Page 119
Xiujie Liang, Na Duan, Yue Wang, Shuangshuang Shu, Xiaohong Xiang, Tingting Guo, Lei Yang, Shaojie Zhang, Xun Tang, and Jun Zhang
Journal of Diabetes and its Complications, 2016, Volume 30, Number 4, Page 573
Jean-Sébastien Maltais, Elie Simard, Ulrike Froehlich, Jean-Bernard Denault, Louis Gendron, and Michel Grandbois
Pharmacological Research, 2016, Volume 104, Page 176
Rong Guo, Weijing Liu, Baoxin Liu, Buchun Zhang, Weiming Li, and Yawei Xu
International Journal of Cardiology, 2015, Volume 191, Page 36
Jie Xu, Ming Xiong, Bin Huang, and Huangqin Chen
Journal of Periodontology, 2015, Volume 86, Number 3, Page 440
Agustin Guerrero-Hernández, Daniel Leon-Aparicio, Jesus Chavez-Reyes, Jesus A. Olivares-Reyes, and Silvia DeJesus
Cell Calcium, 2014, Volume 56, Number 5, Page 311
Antonios N. Gargalionis, Penelope Korkolopoulou, Elena Farmaki, Christina Piperi, Georgia Dalagiorgou, Christos Adamopoulos, Georgia Levidou, Angelica Saetta, Paraskevi Fragkou, Panagiota Tsioli, Hippokratis Kiaris, Adamantia Zizi-Serbetzoglou, Ioannis Karavokyros, Kostas A. Papavassiliou, Nikolaos Tsavaris, Efstratios Patsouris, Efthimia K. Basdra, and Athanasios G. Papavassiliou
International Journal of Cancer, 2015, Volume 136, Number 7, Page 1515
Lili Wu, Da Wang, Yan Xiao, Xiaoyan Zhou, Liqun Wang, Bo Chen, Qiang Li, Xiaohua Guo, and Qiaobing Huang
Life Sciences, 2014, Volume 110, Number 1, Page 44
Ken-ichiro Tanaka, Ippei Kanazawa, Toru Yamaguchi, Shozo Yano, Hiroshi Kaji, and Toshitsugu Sugimoto
Biochemical and Biophysical Research Communications, 2014, Volume 450, Number 1, Page 482
Stylianos A. Kandarakis, Christina Piperi, Fotis Topouzis, and Athanasios G. Papavassiliou
Progress in Retinal and Eye Research, 2014, Volume 42, Page 85
Reiko Inagi, Kumi Shoji, and Masaomi Nangaku
Current Pathobiology Reports, 2013, Volume 1, Number 4, Page 283

Comments (0)

Please log in or register to comment.
Log in