Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter / Tate, Jillian R.

12 Issues per year


IMPACT FACTOR 2016: 3.432

CiteScore 2016: 2.21

SCImago Journal Rank (SJR) 2016: 1.000
Source Normalized Impact per Paper (SNIP) 2016: 1.112

Online
ISSN
1437-4331
See all formats and pricing
More options …
Volume 52, Issue 1 (Jan 2014)

Issues

Plasma advanced glycation end products (AGEs) and NF-κB activity are independent determinants of diastolic and pulse pressure

Karly C. Sourris
  • Baker IDI Heart and Diabetes Institute, Melbourne, Australia
  • Departments of Medicine, Immunology and Physiology, Monash University, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jasmine G. Lyons / Sonia L. Dougherty / Vibhasha Chand
  • Baker IDI Heart and Diabetes Institute, Melbourne, Australia
  • Departments of Medicine, Immunology and Physiology, Monash University, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nora E. Straznicky / Markus P. Schlaich / Mariee T. Grima / Mark E. Cooper
  • Baker IDI Heart and Diabetes Institute, Melbourne, Australia
  • Departments of Medicine, Immunology and Physiology, Monash University, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bronwyn A. Kingwell
  • Baker IDI Heart and Diabetes Institute, Melbourne, Australia
  • Departments of Medicine, Immunology and Physiology, Monash University, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maximilian P.J. de Courten / Josephine M. Forbes
  • Baker IDI Heart and Diabetes Institute, Melbourne, Australia
  • Departments of Medicine, Immunology and Physiology, Monash University, Australia
  • Glycation and Diabetes, Mater Medical Research Institute, South Brisbane, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Barbora de Courten
  • Corresponding author
  • Baker IDI Heart and Diabetes Institute, Melbourne, Australia
  • Department of Biomedical Sciences, Copenhagen University, Denmark
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-03-23 | DOI: https://doi.org/10.1515/cclm-2012-0850

Abstract

Background: High levels of circulating advanced glycation end products (AGEs) can initiate chronic low-grade activation of the immune system (CLAIS) with each of these factors independently associated with cardiovascular (CV) morbidity and mortality. Therefore, our objective was to characterize the relationship between serum AGEs, CLAIS and other risk factors for CV disease in normotensive non-diabetic individuals.

Methods: We measured body mass index (BMI), waist-to-hip ratio (WHR), blood pressure, lipid and glucose profile in 44 non-diabetic volunteers (17 female, 27 males). Carboxymethyl-lysine (CML) was measured by ELISA as a marker for circulating AGEs and NF-κB p65 activity as an inflammatory marker by DNA-binding in peripheral blood mononuclear cells lysates (PBMC).

Results: Plasma CML concentrations were related to diastolic blood pressure (r=−0.51, p<0.01) independently of age, sex, BMI and WHR (p<0.05). Diastolic blood pressure was also related to NF-κB activity in PBMC (r=0.47, p<0.01) before and after adjustment for age, sex, BMI and WHR (p<0.05). Plasma CML concentrations were related to the pulse pressure before (r=0.42; p<0.05) and after adjustment for age, sex, BMI and waist (p<0.05). Neither CML nor NF-κB activity were related to systolic blood pressure (both p=ns). Plasma CML concentrations were not associated with plasma lipid or glucose concentrations (all p=ns).

Conclusions: Plasma AGE levels and NF-κB activity in PBMC were independent determinants of diastolic and pulse pressure in healthy normotensive individuals. This association suggests a role for AGEs in the etiology of hypertension, possibly via the initiation of CLAIS and aortic stiffening.

Keywords: advanced glycation end products; alkaline phosphatase; blood pressure; central obesity; chronic low-grade inflammation; NF-κB activity

References

  • 1.

    WHO. World Health Organisation, Cardiovascular Diseases Fact Sheets 2012; Available at: http://www.who.int/mediacentre/factsheets/fs317/en/index.html. Accessed on October, 2012.

  • 2.

    Cooper ME. Importance of advanced glycation end products in diabetes-associated cardiovascular and renal disease. Am J Hypertens 2004;17(12 Pt 2):31S–38S.CrossrefPubMedGoogle Scholar

  • 3.

    Kilhovd BK, Juutilainen A, Lehto S, Ronnemaa T, Torjesen PA, Hanssen KF, et al. Increased serum levels of advanced glycation endproducts predict total, cardiovascular and coronary mortality in women with type 2 diabetes: a population-based 18 year follow-up study. Diabetologia 2007;50:1409–17.CrossrefGoogle Scholar

  • 4.

    Nin JW, Jorsal A, Ferreira I, Schalkwijk CG, Prins MH, Parving HH, et al. Higher plasma levels of advanced glycation end products are associated with incident cardiovascular disease and all-cause mortality in type 1 diabetes: a 12-year follow-up study. Diabetes Care 2011;34:442–7.Google Scholar

  • 5.

    van Heerebeek L, Hamdani N, Handoko ML, Falcao-Pires I, Musters RJ, Kupreishvili K, et al. Diastolic stiffness of the failing diabetic heart: importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation 2008;117: 43–51.CrossrefGoogle Scholar

  • 6.

    Wolffenbuttel BH, Boulanger CM, Crijns FR, Huijberts MS, Poitevin P, Swennen GN, et al. Breakers of advanced glycation end products restore large artery properties in experimental diabetes. Proc Natl Acad Sci USA 1998;95:4630–4.CrossrefGoogle Scholar

  • 7.

    Forbes JM, Yee LT, Thallas V, Lassila M, Candido R, Jandeleit-Dahm KA, et al. Advanced glycation end product interventions reduce diabetes-accelerated atherosclerosis. Diabetes 2004;53:1813–23.PubMedCrossrefGoogle Scholar

  • 8.

    Kalea AZ, Schmidt AM, Hudson BI. Alternative splicing of RAGE: roles in biology and disease. Front Biosci 2011;16:2756–70.CrossrefGoogle Scholar

  • 9.

    Koyama H, Yamamoto H, Nishizawa Y. Endogenous secretory RAGE as a novel biomarker for metabolic syndrome and cardiovascular diseases. Biomark Insights 2007;2:331–9.PubMedGoogle Scholar

  • 10.

    Choi KM, Yoo HJ, Kim HY, Lee KW, Seo JA, Kim SG, et al. Association between endogenous secretory RAGE, inflammatory markers and arterial stiffness. Int J Cardiol 2009;132:96–101.CrossrefGoogle Scholar

  • 11.

    Dimitriadis K, Tsioufis C, Kasiakogias A, Miliou A, Poulakis M, Kintis K, et al. Soluble receptor for advanced glycation end-products levels are related to albuminuria and arterial stiffness in essential hypertension. Nutr Metab Cardiovasc Dis 31 December, 2011. [Epub ahead of print].Google Scholar

  • 12.

    Zieman SJ, Kass DA. Advanced glycation endproduct crosslinking in the cardiovascular system: potential therapeutic target for cardiovascular disease. Drugs 2004;64:459–70.CrossrefGoogle Scholar

  • 13.

    Sourris KC, Forbes JM. Interactions between advanced glycation end-products (AGE) and their receptors in the development and progression of diabetic nephropathy – are these receptors valid therapeutic targets. Curr Drug Targets 2009;10:42–50.CrossrefGoogle Scholar

  • 14.

    Harcourt BE, Sourris KC, Coughlan MT, Walker KZ, Dougherty SL, Andrikopoulos S, et al. Targeted reduction of advanced glycation improves renal function in obesity. Kidney Int 2011;80:190–8.CrossrefGoogle Scholar

  • 15.

    Uribarri J, Cai W, Sandu O, Peppa M, Goldberg T, Vlassara H. Diet-derived advanced glycation end products are major contributors to the body’s AGE pool and induce inflammation in healthy subjects. Ann N Y Acad Sci 2005;1043:461–6.CrossrefGoogle Scholar

  • 16.

    Uribarri J, Cai W, Ramdas M, Goodman S, Pyzik R, Chen X, et al. Restriction of advanced glycation end products improves insulin resistance in human type 2 diabetes: potential role of AGER1 and SIRT1. Diabetes Care 2011;34:1610–6.CrossrefGoogle Scholar

  • 17.

    Uribarri J, Peppa M, Cai W, Goldberg T, Lu M, Baliga S, et al. Dietary glycotoxins correlate with circulating advanced glycation end product levels in renal failure patients. Am J Kidney Dis 2003;42:532–8.CrossrefGoogle Scholar

  • 18.

    Uribarri J, Peppa M, Cai W, Goldberg T, Lu M, He C, et al. Restriction of dietary glycotoxins reduces excessive advanced glycation end products in renal failure patients. J Am Soc Nephrol 2003;14:728–31.CrossrefGoogle Scholar

  • 19.

    Candido R, Forbes JM, Thomas MC, Thallas V, Dean RG, Burns WC, et al. A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes. Circ Res 2003;92:785–92.CrossrefGoogle Scholar

  • 20.

    Rabbani N, Godfrey L, Xue M, Shaheen F, Geoffrion M, Milne R, et al. Glycation of LDL by methylglyoxal increases arterial atherogenicity: a possible contributor to increased risk of cardiovascular disease in diabetes. Diabetes 2011;60:1973–80.CrossrefGoogle Scholar

  • 21.

    Semba RD, Ferrucci L, Sun K, Beck J, Dalal M, Varadhan R, et al. Advanced glycation end products and their circulating receptors predict cardiovascular disease mortality in older community-dwelling women. Aging Clin Exp Res 2009;21;82–90.Google Scholar

  • 22.

    Yamagishi S, Matsui T, Ueda S, Nakamura K, Imaizumi T. Advanced glycation end products (AGEs) and cardiovascular disease (CVD) in diabetes. Cardiovasc Hematol Agents Med Chem 2007;5:236–40.Google Scholar

  • 23.

    Sakata N, Imanaga Y, Meng J, Tachikawa Y, Takebayashi S, Nagai R, et al. Increased advanced glycation end products in atherosclerotic lesions of patients with end-stage renal disease. Atherosclerosis 1999;142:67–77.CrossrefGoogle Scholar

  • 24.

    Stitt AW, He C, Friedman S, Scher L, Rossi P, Ong L, et al. Elevated AGE-modified ApoB in sera of euglycemic, normolipidemic patients with atherosclerosis: relationship to tissue AGEs. Mol Med 1997;3:617–27.Google Scholar

  • 25.

    Yamada K, Miyahara Y, Hamaguchi K, Nakayama M, Nakano H, Nozaki O, et al. Immunohistochemical study of human advanced glycosylation end-products (AGE) in chronic renal failure. Clin Nephrol 1994;42:354–61.Google Scholar

  • 26.

    Negrean M, Stirban A, Stratmann B, Gawlowski T, Horstmann T, Gotting C, et al. Effects of low- and high-advanced glycation endproduct meals on macro- and microvascular endothelial function and oxidative stress in patients with type 2 diabetes mellitus. Am J Clin Nutr 2007;85:1236–43.Google Scholar

  • 27.

    Peppa M, Raptis SA. Advanced glycation end products and cardiovascular disease. Curr Diabetes Rev 2008;4:92–100.CrossrefGoogle Scholar

  • 28.

    Ridker PM. Inflammation, atherosclerosis, and cardiovascular risk: an epidemiologic view. Blood Coagul Fibrinolysis 1999;10(Suppl 1):S9–12.Google Scholar

  • 29.

    Kass DA, Shapiro EP, Kawaguchi M, Capriotti AR, Scuteri A, deGroof RC, et al. Improved arterial compliance by a novel advanced glycation end-product crosslink breaker. Circulation 2001;104:1464–70.CrossrefGoogle Scholar

  • 30.

    Vozarova B, Weyer C, Lindsay RS, Pratley RE, Bogardus C, Tataranni PA. High white blood cell count is associated with a worsening of insulin sensitivity and predicts the development of type 2 diabetes. Diabetes 2002;51:455–61.CrossrefGoogle Scholar

  • 31.

    Rizzo M, Rizvi AA, Rini GB, Berneis K. The therapeutic modulation of atherogenic dyslipidemia and inflammatory markers in the metabolic syndrome: what is the clinical relevance? Acta Diabetol 2009;46:1–11.CrossrefGoogle Scholar

  • 32.

    Wang TD, Wang YH, Huang TS, Su TC, Pan SL, Chen SY. Circulating levels of markers of inflammation and endothelial activation are increased in men with chronic spinal cord injury. J Formos Med Assoc 2007;106:919–28.CrossrefGoogle Scholar

  • 33.

    Wisse BE. The inflammatory syndrome: the role of adipose tissue cytokines in metabolic disorders linked to obesity. J Am Soc Nephrol 2004;15:2792–800.Google Scholar

  • 34.

    Savoia C, Schiffrin EL. Vascular inflammation in hypertension and diabetes: molecular mechanisms and therapeutic interventions. Clin Sci (Lond) 2007;112:375–84.Google Scholar

  • 35.

    Pitsavos C, Chrysohoou C, Panagiotakos DB, Lentzas Y, Stefanadis C. Abdominal obesity and inflammation predicts hypertension among prehypertensive men and women: the ATTICA Study Heart Vessels 2008;23:96–103.CrossrefGoogle Scholar

  • 36.

    Soro-Paavonen A, Zhang WZ, Venardos K, Coughlan MT, Harris E, Tong DC, et al. Advanced glycation end-products induce vascular dysfunct ion via resistance to nitric oxide and suppression of endothelial nitric oxide synthase. J Hypertens 2010;28:780–8.CrossrefGoogle Scholar

  • 37.

    Csiszar A, Wang M, Lakatta EG, Ungvari Z. Inflammation and endothelial dysfunction during aging: role of NF-kappaB. J Appl Physiol 2008;105:1333–41.CrossrefGoogle Scholar

  • 38.

    Baker RG, Hayden MS, Ghosh S. NF-kappaB, inflammation, and metabolic disease. Cell Metab 2011;13:11–22.CrossrefGoogle Scholar

  • 39.

    Bierhaus A, Chevion S, Chevion M, Hofmann M, Quehenberger P, Illmer T, et al. Advanced glycation end product-induced activation of NF-kappaB is suppressed by alpha-lipoic acid in cultured endothelial cells. Diabetes 1997;46:1481–90.CrossrefGoogle Scholar

  • 40.

    Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, et al. Understanding RAGE, the receptor for advanced glycation end products. J Mol Med (Berl) 2005;83:876–86.CrossrefGoogle Scholar

  • 41.

    Bierhaus A, Schiekofer S, Schwaninger M, Andrassy M, Humpert PM, Chen J, et al. Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB. Diabetes 2001;50:2792–808.CrossrefGoogle Scholar

  • 42.

    Gabir MM, Hanson RL, Dabelea D, Imperatore G, Roumain J, Bennett PH, et al. The 1997 American Diabetes Association and 1999 World Health Organization criteria for hyperglycemia in the diagnosis and prediction of diabetes. Diabetes Care 2000;23:1108–12.Google Scholar

  • 43.

    Penfold SA, Coughlan MT, Patel SK, Srivastava PM, Sourris KC, Steer D, et al. Circulating high-molecular-weight RAGE ligands activate pathways implicated in the development of diabetic nephropathy. Kidney Int 2010;78:287–95.CrossrefGoogle Scholar

  • 44.

    Sourris KC, Harcourt BE, Penfold SA, Yap FY, Morley AL, Morgan PE, et al. Modulation of the cellular expression of circulating advanced glycation end-product receptors in type 2 diabetic nephropathy. Exp Diabetes Res 2010;2010:974681.Google Scholar

  • 45.

    Sourris KC, Lyons JG, de Courten MP, Dougherty SL, Henstridge DC, Cooper ME, et al. c-Jun NH2-terminal kinase activity in subcutaneous adipose tissue but not nuclear factor-kappaB activity in peripheral blood mononuclear cells is an independent determinant of insulin resistance in healthy individuals. Diabetes 2009;58:1259–65.Google Scholar

  • 46.

    Cheung BM, Ong KL, Tso AW, Leung RY, Xu A, Cherny SS, et al. C-reactive protein as a predictor of hypertension in the Hong Kong Cardiovascular Risk Factor Prevalence Study (CRISPS) cohort. J Hum Hypertens 2012;26:108–16.CrossrefGoogle Scholar

  • 47.

    Platat C, Wagner A, Klumpp T, Schweitzer B, Simon C. Relationships of physical activity with metabolic syndrome features and low-grade inflammation in adolescents. Diabetologia 2006;49:2078–85.CrossrefGoogle Scholar

  • 48.

    Beswick RA, Zhang H, Marable D, Catravas JD, Hill WD, Webb RC. Long-term antioxidant administration attenuates mineralocorticoid hypertension and renal inflammatory response. Hypertension 2001;37(2 Part 2):781–6.CrossrefGoogle Scholar

  • 49.

    Touyz RM. Oxidative stress and vascular damage in hypertension. Curr Hypertens Rep 2000;2:98–105.CrossrefGoogle Scholar

  • 50.

    Touyz RM. Recent advances in intracellular signalling in hypertension. Curr Opin Nephrol Hypertens 2003;12:165–74.CrossrefGoogle Scholar

  • 51.

    Peppa M, Uribarri J, Vlassara H. The role of advanced glycation end products in the development of atherosclerosis. Curr Diab Rep 2004;4:31–6.CrossrefGoogle Scholar

  • 52.

    Soro-Paavonen A, Watson AM, Li J, Paavonen K, Koitka A, Calkin AC, et al. Receptor for advanced glycation end products (RAGE) deficiency attenuates the development of atherosclerosis in diabetes. Diabetes 2008;57:2461–9.CrossrefGoogle Scholar

  • 53.

    Tikellis C, Thomas MC, Harcourt BE, Coughlan MT, Pete J, Bialkowski K, et al. Cardiac inflammation associated with a Western diet is mediated via activation of RAGE by AGEs. Am J Physiol Endocrinol Metab 2008;295:E323–30.Google Scholar

  • 54.

    Uribarri J, Stirban A, Sander D, Cai W, Negrean M, Buenting CE, et al. Single oral challenge by advanced glycation end products acutely impairs endothelial function in diabetic and nondiabetic subjects. Diabetes Care 2007;30:2579–82.CrossrefGoogle Scholar

  • 55.

    Sharp PS, Rainbow S, Mukherjee S. Serum levels of low molecular weight advanced glycation end products in diabetic subjects Diabet Med 2003;20:575–9.Google Scholar

  • 56.

    Hartog JW, van de Wal RM, Schalkwijk CG, Miyata T, Jaarsma W, Plokker HW, et al. Advanced glycation end-products, anti-hypertensive treatment and diastolic function in patients with hypertension and diastolic dysfunction. Eur J Heart Fail 2010;12:397–403.CrossrefGoogle Scholar

  • 57.

    Honda H, Hosaka N, Aoshima Y, Hirai Y, Michihata T, Akizawa T. Olmesartan medoxomil is associated with decreased plasma AGEs, pentosidine, and N-(epsilon)-carboxymethyl-lysine levels in hemodialysis patients. Clin Exp Hypertens 2012;34:17–23.CrossrefGoogle Scholar

  • 58.

    Mitsuhashi H, Tamura K, Yamauchi J, Ozawa M, Yanagi M, Dejima T, et al. Effect of losartan on ambulatory short-term blood pressure variability and cardiovascular remodeling in hypertensive patients on hemodialysis. Atherosclerosis 2009;207:186–90.CrossrefGoogle Scholar

  • 59.

    Bakris GL, Bank AJ, Kass DA, Neutel JM, Preston RA, Oparil S. Advanced glycation end-product cross-link breakers. A novel approach to cardiovascular pathologies related to the aging process. Am J Hypertens 2004;17(12 Pt 2):23S–30S.CrossrefGoogle Scholar

  • 60.

    Zieman SJ, Melenovsky V, Clattenburg L, Corretti MC, Capriotti A, Gerstenblith G, et al. Advanced glycation endproduct crosslink breaker (alagebrium) improves endothelial function in patients with isolated systolic hypertension. J Hypertens 2007;25:577–83.CrossrefGoogle Scholar

  • 61.

    Zieman SJ, Melenovsky V, Kass DA. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol 2005;25:932–43.CrossrefGoogle Scholar

  • 62.

    Reddy GK. AGE-related cross-linking of collagen is associated with aortic wall matrix stiffness in the pathogenesis of drug-induced diabetes in rats. Microvasc Res 2004;68:132–42.CrossrefGoogle Scholar

  • 63.

    Norman PE, Davis WA, Coughlan MT, Forbes JM, Golledge J, Davis TM. Serum carboxymethyllysine concentrations are reduced in diabetic men with abdominal aortic aneurysms: Health In Men Study. J Vasc Surg 2009;50:626–31.CrossrefGoogle Scholar

  • 64.

    Dart AM, Kingwell BA. Pulse pressure – a review of mechanisms and clinical relevance. J Am Coll Cardiol 2001;37:975–84.CrossrefGoogle Scholar

  • 65.

    Kingwell BA, Waddell TK, Medley TL, Cameron JD, Dart AM. Large artery stiffness predicts ischemic threshold in patients with coronary artery disease. J Am Coll Cardiol 2002;40:773–9.CrossrefGoogle Scholar

  • 66.

    Bierhaus A, Hofmann MA, Ziegler R, Nawroth PP. AGEs and their interaction with AGE-receptors in vascular disease and diabetes mellitus. I. The AGE concept. Cardiovasc Res 1998;37:586–600.CrossrefGoogle Scholar

  • 67.

    Schmidt AM, Yan SD, Yan SF, Stern DM. The biology of the receptor for advanced glycation end products and its ligands. Biochim Biophys Acta 2000;1498:99–111.CrossrefGoogle Scholar

  • 68.

    Semba RD, Ferrucci L, Fink JC, Sun K, Beck J, Dalal M, et al. Advanced glycation end products and their circulating receptors and level of kidney function in older community-dwelling women. Am J Kidney Dis 2009;53:51–8.CrossrefGoogle Scholar

  • 69.

    Geroldi D, Falcone C, Emanuele E, D’Angelo A, Calcagnino M, Buzzi MP, et al. Decreased plasma levels of soluble receptor for advanced glycation end-products in patients with essential hypertension. J Hypertens 2005;23:1725–9.CrossrefGoogle Scholar

  • 70.

    Kim JK, Park S, Lee MJ, Song YR, Han SH, Kim SG, et al. Plasma levels of soluble receptor for advanced glycation end products (sRAGE) and proinflammatory ligand for RAGE (EN-RAGE) are associated with carotid atherosclerosis in patients with peritoneal dialysis. Atherosclerosis 2012;220:208–14.CrossrefGoogle Scholar

  • 71.

    Nin JW, Jorsal A, Ferreira I, Schalkwijk CG, Prins MH, Parving HH, et al. Higher plasma soluble Receptor for Advanced Glycation End Products (sRAGE) levels are associated with incident cardiovascular disease and all-cause mortality in type 1 diabetes: a 12-year follow-up study. Diabetes 2010;59:2027–32.Google Scholar

  • 72.

    Nakamura K, Yamagishi S, Adachi H, Kurita-Nakamura Y, Matsui T, Yoshida T, et al. Elevation of soluble form of receptor for advanced glycation end products (sRAGE) in diabetic subjects with coronary artery disease. Diabetes Metab Res Rev 2007;23:368–71.CrossrefGoogle Scholar

  • 73.

    den Engelsen C, van den Donk M, Gorter KJ, Salome PL, Rutten GE. Advanced glycation end products measured by skin auto fluorescence in a population with central obesity. Dermatoendocrinol 2012;4:33–8.CrossrefGoogle Scholar

  • 74.

    Sebekova K, Somoza V, Jarcuskova M, Heidland A, Podracka L. Plasma advanced glycation end products are decreased in obese children compared with lean controls. Int J Pediatr Obes 2009;4:112–8.CrossrefGoogle Scholar

  • 75.

    Semba RD, Arab L, Sun K, Nicklett EJ, Ferrucci L. Fat mass is inversely associated with serum carboxymethyl-lysine, an advanced glycation end product, in adults. J Nutr 2011;141:1726–30.CrossrefGoogle Scholar

  • 76.

    Gugliucci A, Kotani K, Taing J, Matsuoka Y, Sano Y, Yoshimura M, et al. Short-term low calorie diet intervention reduces serum advanced glycation end products in healthy overweight or obese adults. Ann Nutr Metab 2009;54:197–201.CrossrefGoogle Scholar

  • 77.

    Xu B, Chibber R, Ruggiero D, Kohner E, Ritter J, Ferro A. Impairment of vascular endothelial nitric oxide synthase activity by advanced glycation end products. Faseb J 2003;17:1289–91.Google Scholar

  • 78.

    Hogan M, Cerami A, Bucala R. Advanced glycosylation endproducts block the antiproliferative effect of nitric oxide. Role in the vascular and renal complications of diabetes mellitus. J Clin Invest 1992;90:1110–5.CrossrefGoogle Scholar

  • 79.

    Basta G. Receptor for advanced glycation endproducts and atherosclerosis: from basic mechanisms to clinical implications. Atherosclerosis 2008;196:9–21.CrossrefGoogle Scholar

About the article

Corresponding author: A/Prof. Barbora de Courten, MD, PhD, MPH, FRACP, Baker IDI Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, 3004, VIC, Australia, Phone: +61 3 85321353, Fax: +61 3 85321111, E-mail:


Received: 2012-12-05

Accepted: 2013-02-14

Published Online: 2013-03-23

Published in Print: 2014-01-01


Citation Information: Clinical Chemistry and Laboratory Medicine, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/cclm-2012-0850.

Export Citation

©2014 by Walter de Gruyter Berlin Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Aya Mousa, Maximilian P.J. de Courten, Josephine Forbes, and Barbora de Courten
The Journal of Steroid Biochemistry and Molecular Biology, 2017
[2]
Estifanos Baye, Maximilian PJ de Courten, Karen Walker, Sanjeeva Ranasinha, Arul Earnest, Josephine M Forbes, and Barbora de Courten
Scientific Reports, 2017, Volume 7, Number 1
[3]
Aya Mousa, Negar Naderpoor, Maximilian P.J. de Courten, Robert Scragg, and Barbora de Courten
The Journal of Steroid Biochemistry and Molecular Biology, 2016
[4]
Jeremy N. Adams, Susan E. Martelle, Laura M. Raffield, Barry I. Freedman, Carl D. Langefeld, Fang-Chi Hsu, Joseph A. Maldjian, Jeff D. Williamson, Christina E. Hugenschmidt, J. Jeffery Carr, Amanda J. Cox, and Donald W. Bowden
Journal of Diabetes and its Complications, 2016, Volume 30, Number 2, Page 262
[5]
Akira Suehiro, Kagehiro Uchida, Mamoru Nakanishi, and Ichiro Wakabayashi
Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2016, Volume 10, Number 1, Page S110
[6]
Barbora de Courten, Aya Mousa, Negar Naderpoor, Helena Teede, Maximilian P J de Courten, and Robert Scragg
Trials, 2015, Volume 16, Number 1

Comments (0)

Please log in or register to comment.
Log in