Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Greaves, Ronda / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter

IMPACT FACTOR 2018: 3.638

CiteScore 2018: 2.44

SCImago Journal Rank (SJR) 2018: 1.191
Source Normalized Impact per Paper (SNIP) 2018: 1.205

See all formats and pricing
More options …
Volume 52, Issue 11


Selection of an optimal method for co-isolation of circulating DNA and miRNA from the plasma of pregnant women

Tatiana Sedlackova
  • Corresponding author
  • Institute of Molecular BioMedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gabriela Repiska
  • Institute of Molecular BioMedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gabriel Minarik
  • Institute of Molecular BioMedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
  • Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
  • Geneton Ltd., Bratislava, Slovakia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-05-09 | DOI: https://doi.org/10.1515/cclm-2014-0021


Background: Circulating nucleic acids acquired non-invasively have been confirmed as useful biomarkers in cancer and prenatal medicine. The most important molecules in the field of circulating nucleic acids research are circulating DNA and miRNA. In this study, the possibility of co-isolation of total circulating DNA, cell-free fetal DNA and miRNA from the plasma of pregnant women was tested, and the yields of co-isolated circulating nucleic acids using two commercial kits and three protocols were compared.

Methods: Cell-free fetal DNA and miRNA from the plasma of pregnant women carrying male fetuses were co-isolated with the miRCURY™ RNA Isolation Kit according to the original protocol and the QIAamp Circulating Nucleic Acid Kit (CNA kit) according to the manufacturer’s protocol for DNA isolation and miRNA isolation. For comparison of DNA isolation, the AR and DYS14 gene-based assays were used for the detection and quantification of total circulating and cell-free fetal DNA. For miRNA detection and quantification, the miR-16 and miR-451 assays were used.

Results: Two different protocols for isolation using the CNA kit did not significantly differ in the yields of isolated tcDNA and cffDNA; however, the amount of isolated cffDNA using the miRCURY™ RNA Isolation Kit was significantly less (p<0.05, F=4.776). There was a statistically significant difference for miRNA isolation (p<0.0001, F=859 for miR-16 and p<0.0001, F=854.4 for miR-451), with the highest amount of isolated miRNA obtained using the miRCURY™ RNA Isolation Kit.

Conclusions: All three methods used in our study were successful in the co-isolation of tcDNA, cffDNA and miRNA from the same sample. The best combined results were obtained with the miRCURY™ RNA Isolation Kit.

Keywords: cell free fetal DNA; cffDNA; circulating nucleic acids; miRNA; non-invasive testing; nucleic acids co-isolation; tcDNA


  • 1.

    Huang X, Yuan T, Tschannen M, Sun Z, Jacob H, Du M, et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics 2013;14:319.CrossrefWeb of SciencePubMedGoogle Scholar

  • 2.

    Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 2008;105:10513–8.CrossrefGoogle Scholar

  • 3.

    Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol 2009;11:1143–9.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 4.

    Pinzani P, Salvianti F, Pazzagli M, Orlando C. Circulating nucleic acids in cancer and pregnancy. Methods 2010;50:302–7.CrossrefWeb of SciencePubMedGoogle Scholar

  • 5.

    Sozzi G, Conte D, Leon M, Ciricione R, Roz L, Ratcliffe C, et al. Quantification of free circulating DNA as a diagnostic marker in lung cancer. J Clin Oncol 2003;21:3902–8.PubMedCrossrefGoogle Scholar

  • 6.

    Chan KC, Jiang P, Zheng YW, Liao GJ, Sun H, Wong J, et al. Cancer genome scanning in plasma: detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing. Clin Chem 2013;59:211–24.CrossrefPubMedGoogle Scholar

  • 7.

    Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM, Chin SF, et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 2013;368:1199–209.Web of ScienceGoogle Scholar

  • 8.

    Murtaza M, Dawson SJ, Tsui DW, Gale D, Forshew T, Piskorz AM, et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 2013;497:108–12.Web of ScienceGoogle Scholar

  • 9.

    Lo YM, Leung TN, Tein MS, Sargent IL, Zhang J, Lau TK, et al. Quantitative abnormalities of fetal DNA in maternal serum in preeclampsia. Clin Chem 1999;45:184–8.Google Scholar

  • 10.

    Zhong XY, Laivuori H, Livingston JC, Ylikorkala O, Sibai BM, Holzgreve W, et al. Elevation of both maternal and fetal extracellular circulating deoxyribonucleic acid concentrations in the plasma of pregnant women with preeclampsia. Am J Obstet Gynecol 2001;184:414–9.Google Scholar

  • 11.

    Zhong XY, Burk MR, Troeger C, Jackson LR, Holzgreve W, Hahn S. Fetal DNA in maternal plasma is elevated in pregnancies with aneuploid fetuses. Prenat Diagn 2000;20:795–8.PubMedCrossrefGoogle Scholar

  • 12.

    Lo YM, Patel P, Wainscoat JS, Sampietro M, Gillmer MD, Fleming KA. Prenatal sex determination by DNA amplification from maternal peripheral blood. Lancet 1989;2:1363–5.CrossrefPubMedGoogle Scholar

  • 13.

    Fan HC, Quake SR. Detection of aneuploidy with digital polymerase chain reaction. Anal Chem 2007;79:7576–9.CrossrefPubMedGoogle Scholar

  • 14.

    Lo YM, Chan KC, Sun H, Chen EZ, Jiang P, Lun FM, et al. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci Transl Med 2010;2:61ra91.Web of ScienceGoogle Scholar

  • 15.

    Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol 2007;23:175–205.CrossrefWeb of SciencePubMedGoogle Scholar

  • 16.

    Enquobahrie DA, Abetew DF, Sorensen TK, Willoughby D, Chidambaram K, Williams MA. Placental microRNA expression in pregnancies complicated by preeclampsia. Am J Obstet Gynecol 2011;204:178 e12–21.PubMedGoogle Scholar

  • 17.

    Gunel T, Zeybek YG, Akcakaya P, Kalelioglu I, Benian A, Ermis H, et al. Serum microRNA expression in pregnancies with preeclampsia. Genet Mol Res 2011;10:4034–40.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 18.

    Camps C, Buffa FM, Colella S, Moore J, Sotiriou C, Sheldon H, et al. hsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res 2008;14:1340–8.CrossrefGoogle Scholar

  • 19.

    van der Meer D, Uchimoto ML, Williams G. Simultaneous analysis of micro-RNA and DNA for determining the body fluid origin of DNA profiles. J Forensic Sci 2013;58:967–71.PubMedGoogle Scholar

  • 20.

    Repiska G, Sedlackova T, Szemes T, Celec P, Minarik G. Selection of the optimal manual method of cell free fetal DNA isolation from maternal plasma. Clin Chem Lab Med 2013;51:1185–9.PubMedWeb of ScienceGoogle Scholar

  • 21.

    McAlexander MA, Phillips MJ, Witwer KW. Comparison of methods for miRNA extraction from plasma and quantitative recovery of RNA from cerebrospinal fluid. Front Genet 2013;4:83.PubMedGoogle Scholar

  • 22.

    Lo YM, Tein MS, Lau TK, Haines CJ, Leung TN, Poon PM, et al. Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet 1998;62:768–75.CrossrefPubMedGoogle Scholar

  • 23.

    Blondal T, Jensby Nielsen S, Baker A, Andreasen D, Mouritzen P, Wrang Teilum M, et al. Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods 2013;59:S1–6.Web of ScienceCrossrefGoogle Scholar

  • 24.

    Kirschner MB, Kao SC, Edelman JJ, Armstrong NJ, Vallely MP, van Zandwijk N, et al. Haemolysis during sample preparation alters microRNA content of plasma. PLoS One 2011;6:e24145.CrossrefWeb of ScienceGoogle Scholar

  • 25.

    McDonald JS, Milosevic D, Reddi HV, Grebe SK, Algeciras-Schimnich A. Analysis of circulating microRNA: preanalytical and analytical challenges. Clin Chem 2011;57:833–40.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 26.

    Song J, Bai Z, Han W, Zhang J, Meng H, Bi J, et al. Identification of suitable reference genes for qPCR analysis of serum microRNA in gastric cancer patients. Dig Dis Sci 2012;57:897–904.Web of SciencePubMedCrossrefGoogle Scholar

  • 27.

    Sourvinou IS, Markou A, Lianidou ES. Quantification of circulating miRNAs in plasma: effect of preanalytical and analytical parameters on their isolation and stability. J Mol Diagn 2013;15:827–34.CrossrefWeb of SciencePubMedGoogle Scholar

  • 28.

    Hanson EK, Lubenow H, Ballantyne J. Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Anal Biochem 2009;387:303–14.Web of ScienceGoogle Scholar

  • 29.

    Zubakov D, Boersma AW, Choi Y, van Kuijk PF, Wiemer EA, Kayser M. MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. Int J Legal Med 2010;124:217–26.CrossrefPubMedWeb of ScienceGoogle Scholar

About the article

Corresponding author: Tatiana Sedlackova, Institute of Molecular BioMedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia, Phone: +421 2 59357371, Fax: +421 2 59357631, E-mail:

Received: 2014-01-06

Accepted: 2014-04-16

Published Online: 2014-05-09

Published in Print: 2014-11-19

Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), Volume 52, Issue 11, Pages 1543–1548, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/cclm-2014-0021.

Export Citation

©2014 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Louise C. Laurent, Asim B. Abdel-Mageed, P. David Adelson, Jorge Arango, Leonora Balaj, Xandra Breakefield, Elizabeth Carlson, Bob S. Carter, Blanca Majem, Clark C. Chen, Emanuele Cocucci, Kirsty Danielson, Amanda Courtright, Saumya Das, Zakaria Y. Abd Elmageed, Daniel Enderle, Alan Ezrin, Marc Ferrer, Jane Freedman, David Galas, Roopali Gandhi, Matthew J. Huentelman, Kendall Van Keuren-Jensen, Yashar Kalani, Yong Kim, Anna M. Krichevsky, Charles Lai, Madhu Lal-Nag, Clara D. Laurent, Trevor Leonardo, Feng Li, Ivana Malenica, Debasis Mondal, Parham Nejad, Tushar Patel, Robert L. Raffai, Renee Rubio, Johan Skog, Robert Spetzler, Jie Sun, Kahraman Tanriverdi, Kasey Vickers, Liang Wang, Yaoyu Wang, Zhiyun Wei, Howard L. Weiner, David Wong, Irene K. Yan, Ashish Yeri, and Stephen Gould
Journal of Extracellular Vesicles, 2015, Volume 4, Number 1, Page 26533

Comments (0)

Please log in or register to comment.
Log in