Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter / Tate, Jillian R.

12 Issues per year

IMPACT FACTOR 2016: 3.432

CiteScore 2016: 2.21

SCImago Journal Rank (SJR) 2016: 1.000
Source Normalized Impact per Paper (SNIP) 2016: 1.112

See all formats and pricing
More options …
Volume 52, Issue 4


Value-added reporting of antinuclear antibody testing by automated indirect immunofluorescence analysis

Sofie Schouwers / Myriam Bonnet / Patrick Verschueren / René Westhovens / Daniel Blockmans / Godelieve Mariën / Xavier Bossuyt
  • Corresponding author
  • Laboratory Medicine, University Hospitals Leuven and Experimental Laboratory Immunology, Department of Microbiology and Immunology, KU Leuven, Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-11-13 | DOI: https://doi.org/10.1515/cclm-2013-0610


Background: Automated systems for antinuclear antibody analysis are being introduced. The aim was to evaluate whether automated quantitative reading of fluorescence intensity is clinically relevant and allows for value-added reporting of test results.

Methods: Consecutive samples (n=260) were used to correlate fluorescence intensity with end-point titer. Moreover, 434 samples from controls (150 healthy blood donors, 150 chronic fatigue syndrome, and 134 diseased controls) and 252 samples (obtained at diagnosis) from patients with systemic rheumatic diseases were screened for antinuclear antibodies (1:80) on HEp-2 cells using NOVA View®, and likelihood ratios were calculated for fluorescence intensity result intervals.

Results: There was a significant correlation between end-point titer and fluorescence intensity. Likelihood ratios for a systemic rheumatic disease increased with increasing fluorescence intensity. The likelihood ratio for a systemic rheumatic disease was 0.06, 0.18, 0.51, 5.3, and 37.5 for a fluorescence intensity of ≤66, 67–150, 151–300, 301–1000, >1000, respectively. A range of 31%–37% of the patients with Sjögren’s syndrome, systemic sclerosis or systemic lupus erythematosus had fluorescence intensities >1000.

Conclusions: Estimation of fluorescence intensity by automated antinuclear antibody analysis offers clinically useful information. Likelihood ratios based on fluorescence intensity test result intervals aid with the interpretation of automated antinuclear antibody analysis and allow value-added reporting.

Keywords: antinuclear antibodies; automation; indirect immunofluorescence; likelihood ratio


  • 1.

    Solomon DH, Kavanaugh AJ, Schur PH; American College of Rheumatology Ad Hoc Committee on Immunologic Testing Guidelines. Evidence-based guidelines for the use of immunologic tests: antinuclear antibody testing. Arthritis Rheum 2002;47:434–44.PubMedCrossrefGoogle Scholar

  • 2.

    Op De Beeck K, Vermeersch P, Verschueren P, Westhovens R, Mariën G, Blockmans D, et al. Detection of antinuclear antibodies by indirect immunofluorescence and by solid phase assay. Autoimmun Rev 2011;10:801–8.CrossrefWeb of ScienceGoogle Scholar

  • 3.

    Op De Beéck K, Vermeersch P, Verschueren P, Westhovens R, Mariën G, Blockmans D, et al. Antinuclear antibody detection by automated multiplex immunoassay in untreated patients at the time of diagnosis. Autoimmun Rev 2012;12:134–43.Web of ScienceGoogle Scholar

  • 4.

    Meroni PL, Schur PH. ANA screening: an old test with new recommendations. Ann Rheum Dis 2010;69: 1420–2.Web of ScienceGoogle Scholar

  • 5.

    Bizzarro N, Wiik A. Appropriateness in anti-nuclear antibody testing: from clinical request to strategic laboratory practice. Clin Exp Rheumatol 2004;22:349–55.Google Scholar

  • 6.

    Bossuyt X, Hendrickx A, Frans J. Antinuclear antibody titer and antibodies to extractable nuclear antigens. Arthritis Rheum 2005;53:987–8.PubMedCrossrefGoogle Scholar

  • 7.

    Tozzoli R, Bonaguri C, Melegari A, Antico A, Bassetti D, Bizzaro N. Current state of diagnostic technologies in the autoimmunology laboratory. Clin Chem Lab Med 2013;51: 129–38.Web of SciencePubMedGoogle Scholar

  • 8.

    Hiemann R, Büttner T, Krieger T, Roggenbuck D, Sack U, Conrad K. Challenges of automated screening and differentiation of non-organ specific autoantibodies on HEp-2 cells. Autoimmun Rev 2009;9:17–22.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 9.

    Egerer K, Roggenbuck D, Hiemann R, Weyer MG, Büttner T, Radau B, et al. Automated evaluation of autoantibodies on human epithelial-2 cells as an approach to standardize cell-based immunofluorescence tests. Arthritis Res Ther 2010;12:R40.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 10.

    Kivity S, Gilburd B, Agmon-Levin N, Carrasco MG, Tzafrir Y, Sofer Y, et al. A novel automated indirect immunofluorescence autoantibody evaluation. Clin Rheumatol 2012;31:503–9.CrossrefPubMedGoogle Scholar

  • 11.

    Voigt J, Krause C, Rohwäder E, Saschenbrecker S, Hahn M, Danckwardt M, et al. Automated indirect immunofluorescence evaluation of antinuclear antibodies on HEp-2 cells. Clin Dev Immunol 2012;2012:651058.Web of SciencePubMedGoogle Scholar

  • 12.

    Bossuyt X, Cooreman S, De Baere H, Verschueren P, Westhovens R, Blockmans D, et al. Detection of antinuclear antibodies by automated indirect immunofluorescence analysis. Clin Chim Acta 2012;415:101–6.Web of ScienceGoogle Scholar

  • 13.

    Bonroy C, Verfaillie C, Smith V, Persijn L, De Witte E, De Keyser F, et al. Automated indirect immunofluorescence antinuclear antibody analysis is a standardized alternative for visual microscope interpretation. Clin Chem Lab Med 2013;51:1771–9.PubMedWeb of ScienceGoogle Scholar

  • 14.

    Tozzoli R, Antico A, Porcelli B, Bassetti D. Automation in indirect immunofluorescence testing: a new step in the evolution of the autoimmunology laboratory. Autoimmunity Highlights 2012;3:59–65.CrossrefGoogle Scholar

  • 15.

    Barak M, Rozenberg O, Grinberg M, Reginashvili D, Kishinewsky M, Henig C, et al. A novel cost effective algorithm for antinuclear antibody (ANA) testing in an outpatient setting. Clin Chem Lab Med 2013;51:e163–5.Web of ScienceGoogle Scholar

  • 16.

    Fukuda K, Straus SE, Hickie I, Sharpe MC, Dobbins JG, Komaroff A. The chronic fatigue syndrome: a comprehensive approach to its definition and study. Ann Intern Med 1994;121:953–9.CrossrefPubMedGoogle Scholar

  • 17.

    Bossuyt X. Clinical performance characteristics of a laboratory test. A practical approach in the autoimmunity laboratory. Autoimmun Rev 2009;8:543–8.CrossrefWeb of ScienceGoogle Scholar

  • 18.

    American college of rheumatology ad hoc committee on immunologic testing guidelines. Guidelines for immunologic laboratory testing in the rheumatic diseases: an introduction. Arthritis Rheum 2002;27:429–33.Google Scholar

  • 19.

    Vermeersch P, Bossuyt X. Comparative analysis of different approaches to report diagnostic accuracy. Arch Intern Med 2010;170:734–5.Web of ScienceGoogle Scholar

About the article

Corresponding author: Xavier Bossuyt, Laboratory Medicine, University Hospitals Leuven and Experimental Laboratory Immunology, Department of Microbiology and Immunology, KU Leuven, Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium, Phone: +32 16 347009, Fax: +32 16 347931, E-mail:

Received: 2013-07-31

Accepted: 2013-10-13

Published Online: 2013-11-13

Published in Print: 2014-04-01

Citation Information: Clinical Chemistry and Laboratory Medicine, Volume 52, Issue 4, Pages 547–551, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/cclm-2013-0610.

Export Citation

©2014 by Walter de Gruyter Berlin/Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Bing Zheng, Enling Li, Haoming Zhu, Jingbo Lu, Xinming Shi, Jie Zhang, and Min Li
Clinical Chemistry and Laboratory Medicine (CCLM), 2017, Volume 0, Number 0
In Young Yoo, Jong Won Oh, Hoon-Suk Cha, Eun-Mi Koh, and Eun-Suk Kang
Annals of Laboratory Medicine, 2017, Volume 37, Number 3, Page 240
Mohammed Alsuwaidi, Margit Dollinger, Martin Fleck, and Boris Ehrenstein
International Journal of Rheumatology, 2016, Volume 2016, Page 1
Gabriella Lakos, Marlene Gonzalez, David Flaherty, Chelsea Bentow, Claudia Ibarra, Deborah Stimson, Lori Nacario, Rico Hiemann, and Thierry Dervieux
Journal of Immunological Methods, 2016, Volume 433, Page 17
Jan Damoiseaux, Carlos A. von Mühlen, Ignacio Garcia-De La Torre, Orlando Gabriel Carballo, Wilson de Melo Cruvinel, Paulo Luiz Carvalho Francescantonio, Marvin J. Fritzler, Manfred Herold, Tsuneyo Mimori, Minoru Satoh, Luis E. C. Andrade, Edward K. L. Chan, and Karsten Conrad
Autoimmunity Highlights, 2016, Volume 7, Number 1
Matthijs Oyaert, Xavier Bossuyt, Isabelle Ravelingien, and Lieve Van Hoovels
Clinical Chemistry and Laboratory Medicine (CCLM), 2016, Volume 54, Number 2
Marvin J. Fritzler
Autoimmunity Reviews, 2016, Volume 15, Number 3, Page 272
Luigi Cinquanta, Nicola Bizzaro, Danilo Villalta, Gabriella Morozzi, Elio Tonutti, Marcello Bagnasco, Giampaola Pesce, Danila Bassetti, Brunetta Porcelli, Lucia Terzuoli, Antonio Antico, Antonella Radice, Gaia Deleonardi, Marilina Tampoia, and Renato Tozzoli
La Rivista Italiana della Medicina di Laboratorio - Italian Journal of Laboratory Medicine, 2015, Volume 11, Number 4, Page 205
Michael Mahler, Pier-Luigi Meroni, Xavier Bossuyt, and Marvin J. Fritzler
Journal of Immunology Research, 2014, Volume 2014, Page 1
Susan S. Copple, Troy D. Jaskowski, Rashelle Giles, and Harry R. Hill
Journal of Immunology Research, 2014, Volume 2014, Page 1

Comments (0)

Please log in or register to comment.
Log in