Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter / Tate, Jillian R.

12 Issues per year


IMPACT FACTOR 2017: 3.556

CiteScore 2017: 2.34

SCImago Journal Rank (SJR) 2017: 1.114
Source Normalized Impact per Paper (SNIP) 2017: 1.188

Online
ISSN
1437-4331
See all formats and pricing
More options …
Volume 52, Issue 5

Issues

Effect of biobanking conditions on short-term stability of biomarkers in human serum and plasma

Johannes Zander
  • Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Leipzig, Leipzig, Germany
  • LIFE – Leipzig Research Center for Civilization Diseases, University Leipzig, Leipzig, Germany
  • Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mathias Bruegel
  • Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Leipzig, Leipzig, Germany
  • Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alisa Kleinhempel
  • Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Leipzig, Leipzig, Germany
  • Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Susen Becker
  • Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Leipzig, Leipzig, Germany
  • LIFE – Leipzig Research Center for Civilization Diseases, University Leipzig, Leipzig, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sirak Petros / Linda Kortz
  • Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Leipzig, Leipzig, Germany
  • LIFE – Leipzig Research Center for Civilization Diseases, University Leipzig, Leipzig, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Juliane Dorow
  • Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Leipzig, Leipzig, Germany
  • LIFE – Leipzig Research Center for Civilization Diseases, University Leipzig, Leipzig, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jürgen Kratzsch
  • Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Leipzig, Leipzig, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ronny Baber
  • Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Leipzig, Leipzig, Germany
  • LIFE – Leipzig Research Center for Civilization Diseases, University Leipzig, Leipzig, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Uta Ceglarek
  • Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Leipzig, Leipzig, Germany
  • LIFE – Leipzig Research Center for Civilization Diseases, University Leipzig, Leipzig, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joachim Thiery
  • Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Leipzig, Leipzig, Germany
  • LIFE – Leipzig Research Center for Civilization Diseases, University Leipzig, Leipzig, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Daniel Teupser
  • Corresponding author
  • Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Leipzig, Leipzig, Germany
  • LIFE – Leipzig Research Center for Civilization Diseases, University Leipzig, Leipzig, Germany
  • Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-12-11 | DOI: https://doi.org/10.1515/cclm-2013-0705

Abstract

Background: Liquid biobanking is an important tool for laboratory diagnostics in routine settings and clinical studies. However, the current knowledge about adequate storage conditions for different classes of biomarkers is incomplete and, in part, contradictory. Here, we performed a comprehensive study on the effects of different storage conditions on the stability of various biomarkers in human serum and plasma.

Methods: Serum and citrated plasma were aliquoted and stored at 4 °C, –20 °C, –80 °C, and <–130 °C for 0, 7, 30, and 90 days, respectively (5–10 pools/condition). Additionally, frozen aliquots were temporarily exposed to higher temperatures during storage to simulate removing individual samples. Stability was tested for 32 biomarkers from 10 different parameter classes (electrolytes, enzymes, metabolites, inert proteins, complement factors, ketone bodies, hormones, cytokines, coagulation factors, and sterols).

Results: Biobanking at –80 °C and <–130 °C for up to 90 days did not lead to substantial changes (defined as >3 interassay coefficients of variation and p<0.01) of any biomarker concentration. In contrast, storage at 4 °C and –20 °C induced substantial changes in single biomarker concentrations in most classes. Such substantial changes were increases (<20%) in electrolytes, metabolites, and proteins, and decreases (<96%) in enzymes, ketone bodies, cytokines, and coagulation factors. Biomarker stability was minimally affected by occasional short-term thermal exposure.

Conclusions: Based on these results, we provide recommendations for storage conditions of up to 90 days for several biomarkers. Generally, storage at ≤–80 °C for at least 90 days including occasional short-term thermal exposure is an excellent storage condition for most biomarkers.

This article offers supplementary material which is provided at the end of the article.

Keywords: biobank; biomarker; plasma; serum; storage; thermal exposure

References

  • 1.

    Lippi G, Guidi GC, Mattiuzzi C, Plebani M. Preanalytical variability: the dark side of the moon in laboratory testing. Clin Chem Lab Med 2006;44:358–65.Google Scholar

  • 2.

    Halim SA, Newby LK, Ohman EM. Biomarkers in cardiovascular clinical trials: past, present, future. Clin Chem 2012;58:45–53.CrossrefPubMedGoogle Scholar

  • 3.

    Baker M. Biorepositories: building better biobanks. Nature 2012;486:141–6.PubMedCrossrefGoogle Scholar

  • 4.

    Clinical and Laboratory Standards Institute. Collection, transport, and processing of blood specimens for testing plasma-based coagulation assays and molecular hemostasis assays; approved guideline, 5th ed. CLSI document H21-A5. Wayne: Clinical and Laboratory Standards Institute, 2008.Google Scholar

  • 5.

    Deutsche Vereinte Gesellschaft für Klinische Chemie und Laboratoriumsmedizin. Die Qualität diagnostischer Proben. München, 2012.Google Scholar

  • 6.

    World Health Organization. Use of anticoagulants in diagnostic laboratory investigations. Geneva: WHO, 2002.Google Scholar

  • 7.

    Dirar AM, Daleel AA, Kamal EA. Effect of storage time and temperature on some serum analytes. Int J Pathol 2010; 8:68–71.Google Scholar

  • 8.

    Heins M, Heil W, Withold W. Storage of serum or whole blood samples? Effects of time and temperature on 22 serum analytes. Eur J Clin Chem Clin Biochem 1995;33: 231–8.PubMedGoogle Scholar

  • 9.

    Plumhoff EA, Thrompson CK, Fisher PK, Bowie EJ, Nichols WL. Effects of specimen storage and handling on coagulation testing. Thromb Haemost 1993;69:866.Google Scholar

  • 10.

    Woodhams B, Girardot O, Blanco MJ, Colesse G, Gourmelin Y. Stability of coagulation proteins in frozen plasma. Blood Coagul Fibrinol 2001;12:229–36.CrossrefGoogle Scholar

  • 11.

    Aziz N, Nishanian P, Mitsuyasu R, Detels R, Fahey JL. Variables that affect assays for plasma cytokines and soluble activation markers. Clin Diagn Lab Immunol 1999;6:89–95.PubMedGoogle Scholar

  • 12.

    Brinkman JW, de Zeeuw D, Lambers Heerspink HJ, Gansevoort RT, Kema IP, de Jong PE, et al. Apparent loss of urinary albumin during long-term frozen storage: HPLC vs immunonephelometry. Clin Chem 2007;53:1520–6.CrossrefGoogle Scholar

  • 13.

    Cray C, Rodriguez M, Zaias J, Altman NH. Effects of storage temperature and time on clinical biochemical parameters from rat serum. J Am Assoc Lab Anim Sci 2009;48:202–4.PubMedGoogle Scholar

  • 14.

    Rouy D, Ernens I, Jeanty C, Wagner DR. Plasma storage at -80 degrees C does not protect matrix metalloproteinase-9 from degradation. Anal Biochem 2005;338:294–8.CrossrefGoogle Scholar

  • 15.

    Vierhapper H, Jörg J, Waldhäusl W. Generation of prostaglandin E2-like radioimmunoreactive material in human plasma during storage at -20 C but not at -80 C. Prostaglandins Leukot Med 1985;18:113–7.CrossrefGoogle Scholar

  • 16.

    Williams KM, Williams AE, Kline LM, Dodd RY. Stability of serum alanine aminotransferase activity. Transfusion 1987;27:431–3.CrossrefPubMedGoogle Scholar

  • 17.

    Baptista JL, Wéry M, van der Stuyft P. Influence of storage temperature on estimates of tumour necrosis factor in plasma samples from patients with cerebral malaria. Ann Trop Med Parasitol 1997;91:429–31.Google Scholar

  • 18.

    Jung K, Bader K, Grützmann KD. Long-term stability of enzymes in human serum stored in liquid nitrogen. Enzyme 1984;31:209–16.PubMedGoogle Scholar

  • 19.

    Bundesärztekammer Richtlinie der Bundesärztekammer zur Qualitätssicherung laboratoriumsmedizinischer Untersuchungen (RiliBÄK 2008). Dtsch Ärztebl 2008;105:A341–55.Google Scholar

  • 20.

    Lembcke J, Ceglarek U, Fiedler GM, Baumann S, Leichtle A, Thiery J. Rapid quantification of free and esterified phytosterols in human serum using APPI-LC-MS/MS. J Lipid Res 2005;46:21–6.PubMedGoogle Scholar

  • 21.

    International Organization for Standardization ISO Guide 30. Terms and definitions used in connection with reference materials, 2nd ed. Geneva: ISO, 1992.Google Scholar

  • 22.

    Donnelly JG, Soldin SJ, Nealon DA, Hicks JM. Stability of twenty-five analytes in human serum at 22 degrees C, 4 degrees C, and -20 degrees C. Pediatr Pathol Lab Med 1995;15:869–74.Google Scholar

  • 23.

    Oddoze C, Lombard E, Portugal H. Stability study of 81 analytes in human whole blood, in serum and in plasma. Clin Biochem 2012;45:464–9.CrossrefWeb of ScienceGoogle Scholar

  • 24.

    Fraser CG. Reference change values. Clin Chem Lab Med 2011;50:807–12.PubMedWeb of ScienceGoogle Scholar

  • 25.

    Olson FJ, Thurison T, Ryndel M, Høyer-Hansen G, Fagerberg B. Soluble urokinase-type plasminogen activator receptor forms in plasma as markers of atherosclerotic plaque vulnerability. Clin Biochem 2010;43:124–30.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 26.

    Schneyer AL, Fujiwara T, Fox J, Welt CK, Adams J, Messerlian GM, et al. Dynamic changes in the intrafollicular inhibin/activin/follistatin axis during human follicular development: relationship to circulating hormone concentrations. J Clin Endocrinol Metab 2000;85:3319–30.PubMedGoogle Scholar

  • 27.

    Rehak NN, Chiang BT. Storage of whole blood: effect of temperature on the measured concentration of analytes in serum. Clin Chem 1988;34:2111–4.PubMedGoogle Scholar

  • 28.

    Sacks DB, Bruns DE, Goldstein DE, Maclaren NK, McDonald JM, Parrott M. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin Chem 2002;48:436–72.PubMedGoogle Scholar

  • 29.

    Kreutzer HH, Fennis WH. Lactic dehydrogenase isoenzymes in blood serum after storage at different temperatures. Clin Chim Acta 1964;9:64–8.CrossrefPubMedGoogle Scholar

  • 30.

    Hatley RH, Franks F. The cold-induced denaturation of lactate dehydrogenase at sub-zero temperatures in the absence of perturbants. FEBS Lett 1989;257:171–3.CrossrefPubMedGoogle Scholar

  • 31.

    Lazar KL, Patapoff TW, Sharma VK. Cold denaturation of monoclonal antibodies. MAbs 2010;2:42–52.CrossrefPubMedGoogle Scholar

  • 32.

    Lopez CF, Darst RK, Rossky PJ. Mechanistic elements of protein cold denaturation. J Phys Chem B 2008;112:5961–7.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 33.

    Marjani M. Effect of storage time and temperature on serum analytes. Am J Appl Sci 2008;5:1047–51.Google Scholar

  • 34.

    Töpfer G, Hornig F, Sauer K, Zawta B. Untersuchungen zur Stabilität von 11 Serumproteinen bei Bestimmung mittels Immunturbidimetrie. J Lab Med 2000;24:118–25.Google Scholar

  • 35.

    Panesar NS, Lit LC. Stability of serum thyroid hormones following 8–11 years of cold storage. Clin Chem Lab Med 2010;48:409–12.Web of ScienceGoogle Scholar

  • 36.

    Thavasu PW, Longhurst S, Joel SP, Slevin ML, Balkwill FR. Measuring cytokine levels in blood. Importance of anticoagulants, processing, and storage conditions. J Immunol Methods 1992;153:115–24.CrossrefPubMedGoogle Scholar

  • 37.

    Flower L, Ahuja RH, Humphries SE, Mohamed-Ali V. Effects of sample handling on the stability of interleukin 6, tumour necrosis factor-alpha and leptin. Cytokine 2000;12:1712–6.PubMedCrossrefGoogle Scholar

About the article

Corresponding author: Daniel Teupser, Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377 Munich, Germany, Phone: +49 89 7095-3210, Fax: +49 89 7095-8888, E-mail:

aJohannes Zander and Mathias Bruegel contributed equally to this work.


Received: 2013-08-28

Accepted: 2013-11-06

Published Online: 2013-12-11

Published in Print: 2014-05-01


Citation Information: Clinical Chemistry and Laboratory Medicine, Volume 52, Issue 5, Pages 629–639, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/cclm-2013-0705.

Export Citation

©2014 by Walter de Gruyter Berlin/Boston.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
David Eshar, Nili Avni-Magen, Elizabeth Kaufman, and Hugues Beaufrère
American Journal of Veterinary Research, 2018, Volume 79, Number 8, Page 852
[2]
Juliane Dorow, Susen Becker, Linda Kortz, Joachim Thiery, Sunna Hauschildt, and Uta Ceglarek
Biopreservation and Biobanking, 2016, Volume 14, Number 2, Page 107
[3]
Fabien B. Vincent, Hieu T. Nim, Jacinta P.W. Lee, Eric F. Morand, and James Harris
Cytokine, 2018
[4]
Konstantinos Makris, Alexander Haliassos, Maria Chondrogianni, and Georgios Tsivgoulis
Critical Reviews in Clinical Laboratory Sciences, 2018, Page 1
[5]
Andreas Jonsson, Claes Hjalmarsson, Peter Falk, and Marie-Lois Ivarsson
Medical Oncology, 2018, Volume 35, Number 4
[6]
Robert P. van Waateringe, Anneke C. Muller Kobold, Jana V. van Vliet-Ostaptchouk, Melanie M. van der Klauw, Jan Koerts, Gabriele Anton, Annette Peters, Gerlinde Trischler, Kirsti Kvaløy, Marit Naess, Vibeke Videm, Kristian Hveem, Melanie Waldenberger, Wolfgang Koenig, and Bruce H.R. Wolffenbuttel
Biopreservation and Biobanking, 2017
[7]
Giuseppe Lippi and Ana-Maria Simundic
Clinical Chemistry and Laboratory Medicine (CCLM), 2017, Volume 0, Number 0
[8]
Carolina David Wiener, Fernanda Pedrotti Moreira, Taiane Azevedo Cardoso, Thaise Campos Mondin, Pedro Vieira da Silva Magalhães, Flavio Kapczinski, Luciano Dias de Mattos Souza, Ricardo Azevedo da Silva, Jean Pierre Oses, and Karen Jansen
Journal of Neuroimmunology, 2017, Volume 307, Page 33
[10]
Darren McMorran, Dwayne Chung Kim Chung, Monika Toth, Oi Wah Liew, Murat Muradoglu, and Tuck Wah Ng
Analytical Biochemistry, 2016, Volume 506, Page 28
[11]
Johannes Zander, Barbara Maier, Michael Zoller, Gundula Döbbeler, Lorenz Frey, Daniel Teupser, and Michael Vogeser
Clinical Chemistry and Laboratory Medicine (CCLM), 2016, Volume 54, Number 2

Comments (0)

Please log in or register to comment.
Log in