Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Greaves, Ronda / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter


IMPACT FACTOR 2017: 3.556

CiteScore 2017: 2.34

SCImago Journal Rank (SJR) 2017: 1.114
Source Normalized Impact per Paper (SNIP) 2017: 1.188

Online
ISSN
1437-4331
See all formats and pricing
More options …
Volume 52, Issue 6

Issues

The revised Lund-Malmö GFR estimating equation outperforms MDRD and CKD-EPI across GFR, age and BMI intervals in a large Swedish population

Ulf Nyman
  • Corresponding author
  • Department of Diagnostic Radiology, Lund University, Lasarettet Trelleborg, 231 52 Trelleborg, Sweden
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anders Grubb / Anders Larsson / Lars-Olof Hansson / Mats Flodin / Gunnar Nordin / Veronica Lindström / Jonas Björk
  • R&D Centre Skåne, Skåne University Hospital, Lund, Sweden
  • Department of Occupational and Environmental Medicine, Lund University, Lund, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-12-12 | DOI: https://doi.org/10.1515/cclm-2013-0741

Abstract

Background: The performance of creatinine-based glomerular filtration rate (GFR) estimating equations may vary in subgroups defined by GFR, age and body mass index (BMI). This study compares the performance of the Modification of Diet in Renal Disease (MDRD) study and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations with the revised Lund-Malmö equation (LM Revised), a new equation that can be expected to handle changes in GFR across the life span more accurately.

Methods: The study included 3495 examinations in 2847 adult Swedish patients referred for measurement of GFR (mGFR) 2008–2010 by plasma clearance of iohexol (median 52 mL/min/1.73 m2). Bias, precision [interquartile range (IQR)] and accuracy [percentage of estimates ±10% (P10) and ±30% (P30) of mGFR] were compared.

Results: The overall results of LM Revised/MDRD/CKD-EPI were: median bias 2%/8%/11%, IQR 12/14/14 mL/min/1.73 m2, P10 40%/35%/35% and P30 84%/75%/76%. LM Revised was the most stable equation in terms of bias, precision and accuracy across mGFR, age and BMI intervals irrespective of gender. MDRD and CKD-EPI overestimated mGFR in patients with decreased kidney function, young adults and elderly. All three equations overestimated mGFR and had low accuracy in patients with BMI <20 kg/m2, most pronounced among men.

Conclusions: In settings similar to the investigated cohort LM Revised should be preferred to MDRD and CKD-EPI due to its higher accuracy and more stable performance across GFR, age and BMI intervals.

This article offers supplementary material which is provided at the end of the article.

Keywords: creatinine; glomerular filtration rate; kidney disease; kidney function tests; renal insufficiency

References

  • 1.

    KDIGO. KDIGO clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 2013;3:1–150.Web of ScienceGoogle Scholar

  • 2.

    Sarnak MJ, Levey AS, Schoolwerth AC, Coresh J, Culleton B, Hamm LL, et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation 2003;108:2154–69.PubMedGoogle Scholar

  • 3.

    Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 2006;145:247–54.PubMedCrossrefGoogle Scholar

  • 4.

    Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009;150:604–12.CrossrefPubMedGoogle Scholar

  • 5.

    Ma YC, Zuo L, Chen JH, Luo Q, Yu XQ, Li Y, et al. Modified glomerular filtration rate estimating equation for Chinese patients with chronic kidney disease. J Am Soc Nephrol 2006;17:2937–44.CrossrefPubMedGoogle Scholar

  • 6.

    Emara M, Zahran A, Abd El, Hady H, Shoker A. How to best define patients with moderate chronic kidney disease. Nephron Clin Pract 2008;110:c195–206.CrossrefGoogle Scholar

  • 7.

    Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis 2009;53:982–92.Web of ScienceCrossrefPubMedGoogle Scholar

  • 8.

    Stevens LA, Claybon MA, Schmid CH, Chen J, Horio M, Imai E, et al. Evaluation of the chronic kidney disease epidemiology collaboration equation for estimating the glomerular filtration rate in multiple ethnicities. Kidney Int 2011;79:555–62.Web of ScienceCrossrefPubMedGoogle Scholar

  • 9.

    Horio M, Imai E, Yasuda Y, Watanabe T, Matsuo S. Modification of the CKD epidemiology collaboration (CKD-EPI) equation for Japanese: accuracy and use for population estimates. Am J Kidney Dis 2010;56:32–8.Web of ScienceCrossrefPubMedGoogle Scholar

  • 10.

    Nyman U, Grubb A, Sterner G, Björk J. The CKD-EPI and MDRD equations to estimate GFR. Validation in the Swedish Lund-Malmö Study cohort. Scand J Clin Lab Invest 2011;71: 129–38.Web of ScienceGoogle Scholar

  • 11.

    Segarra A, de la Torre J, Ramos N, Quiroz A, Garjau M, Torres I, et al. Assessing glomerular filtration rate in hospitalized patients: a comparison between CKD-EPI and four cystatin C-based equations. Clin J Am Soc Nephrol 2011;6:2411–20.CrossrefGoogle Scholar

  • 12.

    Björk J, Jones I, Nyman U, Sjöström P. Validation of the Lund-Malmö, Chronic Kidney Disease Epidemiology (CKD-EPI) and Modification of Diet in Renal Disease (MDRD) equations to estimate glomerular filtration rate in a large Swedish clinical population. Scand J Urol Nephrol 2012;46:212–22.CrossrefWeb of ScienceGoogle Scholar

  • 13.

    Earley A, Miskulin D, Lamb EJ, Levey AS, Uhlig K. Estimating equations for glomerular filtration rate in the era of creatinine standardization: a systematic review. Ann Intern Med 2012;156:785–95.CrossrefPubMedGoogle Scholar

  • 14.

    Horio M, Yasuda Y, Imai E. Ethnic factors of the glomerular filtration rate estimating equation. Kidney Int 2012;81:799; author reply 800.CrossrefGoogle Scholar

  • 15.

    Kwong YT, Stevens LA, Selvin E, Zhang YL, Greene T, Van Lente F, et al. Imprecision of urinary iothalamate clearance as a gold-standard measure of GFR decreases the diagnostic accuracy of kidney function estimating equations. Am J Kidney Dis 2010;56:39–49.Web of SciencePubMedCrossrefGoogle Scholar

  • 16.

    Stevens LA, Manzi J, Levey AS, Chen J, Deysher AE, Greene T, et al. Impact of creatinine calibration on performance of GFR estimating equations in a pooled individual patient database. Am J Kidney Dis 2007;50:21–35.Web of ScienceCrossrefGoogle Scholar

  • 17.

    Nyman U, Björk J, Lindström V, Grubb A. The Lund-Malmö creatinine-based glomerular filtration rate prediction equation for adults also performs well in children. Scand J Clin Lab Invest 2008;68:568–76.CrossrefGoogle Scholar

  • 18.

    SBU. Swedish Council on Health Technology Assessment (Statens Beredning för Medicinsk Utvärdering). Estimation of renal function (Skattning av njurfunktion) 2013; Report 214. Available from: http://www.sbu.se/214. Accessed on 25 October, 2013.

  • 19.

    Grubb A, Blirup-Jensen S, Lindstrom V, Schmidt C, Althaus H, Zegers I. First certified reference material for cystatin C in human serum ERM-DA471/IFCC. Clin Chem Lab Med 2010;48:1619–21.Web of ScienceGoogle Scholar

  • 20.

    Bäck SE, Krutzen E, Nilsson-Ehle P. Contrast media as markers for glomerular filtration: a pharmacokinetic comparison of four agents. Scand J Clin Lab Invest 1988;48:247–53.CrossrefGoogle Scholar

  • 21.

    Bird NJ, Peters C, Michell AR, Peters AM. Comparison of GFR measurements assessed from single versus multiple samples. Am J Kidney Dis 2009;54:278–88.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 22.

    Nilsson-Ehle P. Iohexol clearance for the determination of glomerular filtration rate: 15 years’ experience in clinical practice. eJIFCC 2002;13. Available from: http://www.ifcc.org/ifccfiles/docs/130201005.pdf. Accessed on 25 October, 2013.

  • 23.

    Sterner G, Frennby B, Hultberg B, Almen T. Iohexol clearance for GFR-determination in renal failure – single or multiple plasma sampling? Nephrol Dial Transplant 1996;11:521–5.Google Scholar

  • 24.

    Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976;16:31–41.CrossrefPubMedGoogle Scholar

  • 25.

    Krutzen E, Back SE, Nilsson-Ehle I, Nilsson-Ehle P. Plasma clearance of a new contrast agent, iohexol: a method for the assessment of glomerular filtration rate. J Lab Clin Med 1984;104:955–61.PubMedGoogle Scholar

  • 26.

    Jacobsson L. A method for the calculation of renal clearance based on a single plasma sample. Clin Physiol 1983;3:297–305.PubMedCrossrefGoogle Scholar

  • 27.

    DuBois D, DuBois E. A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med 1916;17:863–71.CrossrefGoogle Scholar

  • 28.

    Stevens LA, Zhang Y, Schmid CH. Evaluating the performance of equations for estimating glomerular filtration rate. J Nephrol 2008;21:797–807.PubMedGoogle Scholar

  • 29.

    Spinler SA, Nawarskas JJ, Boyce EG, Connors JE, Charland SL, Goldfarb S. Predictive performance of ten equations for estimating creatinine clearance in cardiac patients. Iohexol Cooperative Study Group. Ann Pharmacother 1998;32:1275–83.CrossrefGoogle Scholar

  • 30.

    K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Part 5. Evaluation of laboratory measurements for clinical assessment of kidney disease. Am J Kidney Dis 2002;39:S76–110.Google Scholar

  • 31.

    Efron B, Tibshirani RJ. An introduction to the bootstrap. New York: Chapman and Hall, 1993.Google Scholar

  • 32.

    Delanaye P, Cavalier E. Staging chronic kidney disease and estimating glomerular filtration rate: an opinion paper about the new international recommendations. Clin Chem Lab Med 2013;51:1911–7.Web of SciencePubMedGoogle Scholar

  • 33.

    Evans M, van Stralen KJ, Schon S, Prutz KG, Stendahl M, Rippe B, et al. Glomerular filtration rate-estimating equations for patients with advanced chronic kidney disease. Nephrol Dial Transplant 2013;28:2518–26.Google Scholar

  • 34.

    Björk J, Grubb A, Sterner G, Nyman U. Revised equations for estimating glomerular filtration rate based on the Lund-Malmö Study cohort. Scand J Clin Lab Invest 2011;71:232–9.CrossrefGoogle Scholar

  • 35.

    Schaeffner ES, Ebert N, Delanaye P, Frei U, Gaedeke J, Jakob O, et al. Two novel equations to estimate kidney function in persons aged 70 years or older. Ann Intern Med 2012;157: 471–81.Google Scholar

  • 36.

    Koppe L, Klich A, Dubourg L, Ecochard R, Hadj-Aissa A. Performance of creatinine-based equations compared in older patients. J Nephrol 2013;26:716–23.Web of ScienceCrossrefPubMedGoogle Scholar

  • 37.

    Flamant M, Haymann JP, Vidal-Petiot E, Letavernier E, Clerici C, Boffa JJ, et al. GFR estimation using the Cockcroft-Gault, MDRD study, and CKD-EPI equations in the elderly. Am J Kidney Dis 2012;60:847–9.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 38.

    Murata K, Baumann NA, Saenger AK, Larson TS, Rule AD, Lieske JC. Relative performance of the MDRD and CKD-EPI equations for estimating glomerular filtration rate among patients with varied clinical presentations. Clin J Am Soc Nephrol 2011;6:1963–72.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 39.

    Stevens LA, Coresh J, Feldman HI, Greene T, Lash JP, Nelson RG, et al. Evaluation of the modification of diet in renal disease study equation in a large diverse population. J Am Soc Nephrol 2007;18:2749–57.CrossrefWeb of ScienceGoogle Scholar

  • 40.

    Björk J, Bäck SE, Sterner G, Carlson J, Lindström V, Bakoush O, et al. Prediction of relative glomerular filtration rate in adults: new improved equations based on Swedish Caucasians and standardized plasma-creatinine assays. Scand J Clin Lab Invest 2007;67:678–95.Google Scholar

  • 41.

    Bouquegneau A, Vidal-Petiot E, Vrtovsnik F, Cavalier E, Rorive M, Krzesinski JM, et al. Modification of diet in renal disease versus chronic kidney disease epidemiology collaboration equation to estimate glomerular filtration rate in obese patients. Nephrol Dial Transplant 2013;28(Suppl 4):iv122–30.Web of ScienceGoogle Scholar

  • 42.

    Eriksen BO, Melsom T, Mathisen UD, Jenssen TG, Solbu MD, Toft I. GFR normalized to total body water allows comparisons across genders and body sizes. J Am Soc Nephrol 2011;22: 1517–25.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 43.

    Nyman U, Grubb A, Sterner G, Björk J. Different equations to combine creatinine and cystatin C to predict GFR. Arithmetic mean of existing equations performs as well as complex combinations. Scand J Clin Lab Invest 2009;69:619–27.Web of ScienceCrossrefGoogle Scholar

  • 44.

    Stevens LA, Coresh J, Schmid CH, Feldman HI, Froissart M, Kusek J, et al. Estimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3,418 individuals with CKD. Am J Kidney Dis 2008;51: 395–406.Web of ScienceGoogle Scholar

  • 45.

    Tidman M, Sjöström P, Jones I. A Comparison of GFR estimating formulae based upon s-cystatin C and s-creatinine and a combination of the two. Nephrol Dial Transplant 2008; 23:154–60.Web of ScienceGoogle Scholar

  • 46.

    Granerus G, Jacobsson L. Calculation of 51-Cr-EDTA single injection clearance. Comparison between a single sample and multiple sample formula. Swedish Soc Radiol Proc 1985;19:71–3.Google Scholar

About the article

Corresponding author: Ulf Nyman, MD, PhD, Department of Diagnostic Radiology, Lund University, Lasarettet Trelleborg, 231 52 Trelleborg, Sweden, Phone: +46 76 8871133/+46 733 842244, Fax: +46 410 15983, E-mail:


Received: 2013-09-05

Accepted: 2013-11-18

Published Online: 2013-12-12

Published in Print: 2014-06-01


Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), Volume 52, Issue 6, Pages 815–824, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/cclm-2013-0741.

Export Citation

©2014 by Walter de Gruyter Berlin/Boston.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Sadichhya Lohani, Jon Golenbiewski, Abhishek Swami, and Alexandra Halalau
BMJ Case Reports, 2017, Page bcr-2017-221016
[2]
Markus Sällman Almén, Jonas Björk, Ulf Nyman, Veronica Lindström, Magnus Jonsson, Magnus Abrahamson, AnnaLotta Schiller Vestergren, Örjan Lindhe, Gary Franklin, Anders Christensson, and Anders Grubb
Kidney International Reports, 2018
[3]
Ulf Nyman, Joanna Ahlkvist, Peter Aspelin, Torkel Brismar, Anders Frid, Mikael Hellström, Per Liss, Gunnar Sterner, and Peter Leander
European Radiology, 2018
[4]
Jonas Björk, Anders Grubb, Vilmundur Gudnason, Olafur S Indridason, Andrew S Levey, Runolfur Palsson, and Ulf Nyman
Nephrology Dialysis Transplantation, 2018, Volume 33, Number 8, Page 1380
[5]
Florencia Harari, Gerd Sallsten, Anders Christensson, Marinka Petkovic, Bo Hedblad, Niklas Forsgard, Olle Melander, Peter M. Nilsson, Yan Borné, Gunnar Engström, and Lars Barregard
American Journal of Kidney Diseases, 2018
[6]
Pierre Delanaye
Néphrologie & Thérapeutique, 2018, Volume 14, Page S59
[7]
Kristian Heldal, Karsten Midtvedt, Anders Hartmann, Anna Varberg Reisaeter, Torbjørn F. Heldal, Stein Bergan, Cathrin L. Salvador, and Anders Åsberg
Transplant International, 2018
[10]
Anders Christensson, Jessica A. Ash, Robert K. DeLisle, Fraser W. Gaspar, Rachel Ostroff, Anders Grubb, Veronica Lindström, Laila Bruun, and Steve A. Williams
PROTEOMICS - Clinical Applications, 2018, Page 1700067
[11]
Malini Hatti, Nikolitsa Solomonidi, Inga Odenholt, Johan Tham, and Fredrik Resman
European Journal of Clinical Microbiology & Infectious Diseases, 2018
[12]
Fredrik Hessulf, Thomas Karlsson, Peter Lundgren, Solveig Aune, Annelie Strömsöe, Marie-Louise Källstedt-Södersved, Therese Djärv, Johan Herlitz, and Johan Engdahl
International Journal of Cardiology, 2017
[13]
Irina Gyllenhammar, Barbro Diderholm, Jan Gustafsson, Urs Berger, Peter Ridefelt, Jonathan P. Benskin, Sanna Lignell, Erik Lampa, and Anders Glynn
Environment International, 2018, Volume 111, Page 191
[14]
Pietro Trocchi, Matthias Girndt, Christa Scheidt-Nave, Silke Markau, and Andreas Stang
BMC Nephrology, 2017, Volume 18, Number 1
[15]
Christopher Nilsson, Anders Christensson, Peter M. Nilsson, and Louise Bennet
Journal of Hypertension, 2017, Volume 35, Number 12, Page 2493
[16]
Tae-Dong Jeong, Eun-Jung Cho, Woochang Lee, Sail Chun, Ki-Sook Hong, and Won-Ki Min
Annals of Laboratory Medicine, 2017, Volume 37, Number 5, Page 371
[17]
Nooraldeen Al-Dury, Araz Rawshani, Johan Israelsson, Anneli Strömsöe, Solveig Aune, Jens Agerström, Thomas Karlsson, Annica Ravn-Fischer, and Johan Herlitz
The American Journal of Emergency Medicine, 2017
[18]
AS Levey and LA Inker
Clinical Pharmacology & Therapeutics, 2017, Volume 102, Number 3, Page 405
[19]
Andrew S. Levey, Hocine Tighiouart, Andrew L. Simon, and Lesley A. Inker
American Journal of Kidney Diseases, 2017
[20]
Jonas Björk, Anders Grubb, Gunnar Sterner, Sten-Erik Bäck, and Ulf Nyman
Scandinavian Journal of Clinical and Laboratory Investigation, 2017, Volume 77, Number 3, Page 199
[21]
Björn Westerlind, Carl Johan Östgren, Sigvard Mölstad, and Patrik Midlöv
BMC Geriatrics, 2016, Volume 16, Number 1
[22]
Anders Christensson, Anders Grubb, John Molvin, Hannes Holm, Klas Gransbo, Gordana Tasevska-Dinevska, Erasmus Bachus, Amra Jujic, and Martin Magnusson
Scandinavian Journal of Clinical and Laboratory Investigation, 2016, Volume 76, Number 7, Page 568
[23]
Misuk Ji, Yoon-Hee Lee, Mina Hur, Hyesun Kim, Han-Ik Cho, Hyun Suk Yang, Silvia Navarin, and Salvatore Di Somma
Annals of Laboratory Medicine, 2016, Volume 36, Number 6, Page 521
[24]
Beata Borgström Bolmsjö, Sigvard Mölstad, Martin Gallagher, John Chalmers, Carl Johan Östgren, and Patrik Midlöv
Geriatrics & Gerontology International, 2017, Volume 17, Number 5, Page 791
[25]
Alain Dardashti, Shahab Nozohoor, Anders Grubb, and Henrik Bjursten
Scandinavian Journal of Clinical and Laboratory Investigation, 2016, Volume 76, Number 1, Page 74
[27]
Jonas Björk, Anders Grubb, Gunnar Sterner, Sten-Erik Bäck, and Ulf Nyman
American Journal of Kidney Diseases, 2015, Volume 66, Number 6, Page 1107
[28]
Ashkan Labaf, Bartosz Grzymala-Lubanski, Anders Själander, Peter J. Svensson, and Martin Stagmo
American Heart Journal, 2015, Volume 170, Number 3, Page 559
[29]
Ulf Nyman, Jonas Björk, Sten-Erik Bäck, Gunnar Sterner, and Anders Grubb
European Radiology, 2016, Volume 26, Number 2, Page 425
[30]
Anders Grubb, Veronica Lindström, Magnus Jonsson, Sten-Erik Bäck, Tomas Åhlund, Bengt Rippe, and Anders Christensson
Scandinavian Journal of Clinical and Laboratory Investigation, 2015, Volume 75, Number 4, Page 333
[31]
Inga Soveri, Ulla B. Berg, Jonas Björk, Carl-Gustaf Elinder, Anders Grubb, Ingegerd Mejare, Gunnar Sterner, and Sten-Erik Bäck
American Journal of Kidney Diseases, 2014, Volume 64, Number 3, Page 411

Comments (0)

Please log in or register to comment.
Log in