Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter / Tate, Jillian R.

12 Issues per year


IMPACT FACTOR 2017: 3.556

CiteScore 2017: 2.34

SCImago Journal Rank (SJR) 2017: 1.114
Source Normalized Impact per Paper (SNIP) 2017: 1.188

Online
ISSN
1437-4331
See all formats and pricing
More options …
Volume 52, Issue 8

Issues

Enhanced miR-182 transcription is a predictor of poor overall survival in colorectal adenocarcinoma patients

Stamatia-Maria Rapti / Christos K. Kontos / Iordanis N. Papadopoulos
  • Fourth Surgery Department, University of Athens, University General Hospital “Attikon”, Athens, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andreas Scorilas
Published Online: 2014-03-08 | DOI: https://doi.org/10.1515/cclm-2013-0950

Abstract

Background: Colorectal cancer is the second most frequent cause of cancer-related death in the developed world. Recent studies have tried to associate colorectal cancer with the aberrant expression of several microRNAs. The aim of the present study was the development of a highly sensitive quantitative real-time PCR which can be used to evaluate the miR-182 expression levels in colorectal adenocarcinoma and adjacent non-cancerous tissue specimens and associate them with several clinicopathological characteristics, aiming to examine the prognostic potential of miR-182.

Methods: Total RNA was isolated from 116 malignant colorectal adenocarcinoma specimens and 60 paired non-cancerous tissues. Then, polyadenylation of 2 μg total RNA by poly(A) polymerase and reverse transcription with suitable oligo-dT-adapter followed. miR-182 levels were quantified by real-time PCR based on SYBR Green chemistry. The results were analyzed by the comparative quantification cycle method and by extensive biostatistical analysis.

Results: miR-182 was found to be significantly upregulated in colorectal adenocarcinoma specimens compared to their non-cancerous counterparts (p<0.001). miR-182 expression increases as the histological grade increases (p=0.013). miR-182 overexpression is associated with high depth of tumor invasion, positive regional lymph node status, and advanced TNM stage of patients. Therefore, miR-182 is an unfavorable prognostic marker in colorectal adenocarcinoma, predicting poor overall survival (p=0.007). Most importantly, miR-182 expression retained its unfavorable prognostic significance among patients with well- or moderately differentiated colorectal adenocarcinoma (p=0.006) and among metastasis-free patients (p=0.025).

Conclusions: The increased levels of the oncogene-like miR-182 increase the risk for disease progression and predict poor overall survival for colorectal adenocarcinoma patients.

This article offers supplementary material which is provided at the end of the article.

Keywords: colorectal cancer; microRNAs (miRNAs); molecular tumor markers; prognostic biomarkers; quantitative real-time PCR (qPCR)

References

  • 1.

    Boyle P, Levin B. Colorectal cancer. In: World cancer report. Lyon: International Agency for Research on Cancer, 2008; 374–8.Google Scholar

  • 2.

    Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010;127:2893–917.Google Scholar

  • 3.

    Ferlay J, Autier P, Boniol M, Heanue M, Colombet M, Boyle P. Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol 2007;18:581–92.CrossrefGoogle Scholar

  • 4.

    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, et al. Cancer statistics, 2008. CA Cancer J Clin 2008;58:71–96.CrossrefGoogle Scholar

  • 5.

    Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet 2006;15:R17–29.CrossrefGoogle Scholar

  • 6.

    Laurent LC, Chen J, Ulitsky I, Mueller FJ, Lu C, Shamir R, et al. Comprehensive microRNA profiling reveals a unique human embryonic stem cell signature dominated by a single seed sequence. Stem Cells 2008;26:1506–16.Web of SciencePubMedCrossrefGoogle Scholar

  • 7.

    Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 2004;101:2999–3004.CrossrefGoogle Scholar

  • 8.

    Nicoloso MS, Spizzo R, Shimizu M, Rossi S, Calin GA. MicroRNAs – the micro steering wheel of tumour metastases. Nat Rev Cancer 2009;9:293–302.Web of ScienceCrossrefPubMedGoogle Scholar

  • 9.

    Lujambio A, Lowe SW. The microcosmos of cancer. Nature 2012;482:347–55.Google Scholar

  • 10.

    Rossi S, Di Narzo AF, Mestdagh P, Jacobs B, Bosman FT, Gustavsson B, et al. microRNAs in colon cancer: a roadmap for discovery. FEBS Lett 2012;586:3000–7.Web of ScienceGoogle Scholar

  • 11.

    Liu Z, Liu J, Segura MF, Shao C, Lee P, Gong Y, et al. MiR-182 overexpression in tumourigenesis of high-grade serous ovarian carcinoma. J Pathol 2012;228:204–15.PubMedGoogle Scholar

  • 12.

    Giricz O, Reynolds PA, Ramnauth A, Liu C, Wang T, Stead L, et al. Hsa-miR-375 is differentially expressed during breast lobular neoplasia and promotes loss of mammary acinar polarity. J Pathol 2012;226:108–19.Google Scholar

  • 13.

    Segura MF, Hanniford D, Menendez S, Reavie L, Zou X, Alvarez-Diaz S, et al. Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci USA 2009;106:1814–9.Google Scholar

  • 14.

    Wang J, Li J, Shen J, Wang C, Yang L, Zhang X. MicroRNA-182 downregulates metastasis suppressor 1 and contributes to metastasis of hepatocellular carcinoma. BMC Cancer 2012;12:227.Web of ScienceGoogle Scholar

  • 15.

    Kong WQ, Bai R, Liu T, Cai CL, Liu M, Li X, et al. MicroRNA-182 targets cAMP-responsive element-binding protein 1 and suppresses cell growth in human gastric adenocarcinoma. FEBS J 2012;279:1252–60.Web of ScienceGoogle Scholar

  • 16.

    Sun Y, Fang R, Li C, Li L, Li F, Ye X, et al. Hsa-mir-182 suppresses lung tumorigenesis through down regulation of RGS17 expression in vitro. Biochem Biophys Res Commun 2010;396:501–7.Google Scholar

  • 17.

    Pignot G, Cizeron-Clairac G, Vacher S, Susini A, Tozlu S, Vieillefond A, et al. microRNA expression profile in a large series of bladder tumors: identification of a 3-miRNA signature associated with aggressiveness of muscle-invasive bladder cancer. Int J Cancer 2013;132:2479–91.CrossrefGoogle Scholar

  • 18.

    Siva AC, Nelson LJ, Fleischer CL, Majlessi M, Becker MM, Vessella RL, et al. Molecular assays for the detection of microRNAs in prostate cancer. Mol Cancer 2009;8:17.PubMedCrossrefGoogle Scholar

  • 19.

    Zhang QH, Sun HM, Zheng RZ, Li YC, Zhang Q, Cheng P, et al. Meta-analysis of microRNA-183 family expression in human cancer studies comparing cancer tissues with noncancerous tissues. Gene 2013;527:26–32.Web of ScienceGoogle Scholar

  • 20.

    Liu H, Du L, Wen Z, Yang Y, Li J, Wang L, et al. Up-regulation of miR-182 expression in colorectal cancer tissues and its prognostic value. Int J Colorectal Dis 2013;28:697–703.Google Scholar

  • 21.

    Cekaite L, Rantala JK, Bruun J, Guriby M, Agesen TH, Danielsen SA, et al. MiR-9, -31, and -182 deregulation promote proliferation and tumor cell survival in colon cancer. Neoplasia 2012;14:868–79.Web of ScienceGoogle Scholar

  • 22.

    Vergoulis T, Vlachos IS, Alexiou P, Georgakilas G, Maragkakis M, Reczko M, et al. TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res 2012;40:D222–9.Web of ScienceGoogle Scholar

  • 23.

    Myatt SS, Lam EW. The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer 2007;7:847–59.Web of ScienceCrossrefPubMedGoogle Scholar

  • 24.

    Paik JH, Kollipara R, Chu G, Ji H, Xiao Y, Ding Z, et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 2007;128:309–23.CrossrefWeb of SciencePubMedGoogle Scholar

  • 25.

    Yan D, Dong XD, Chen X, Yao S, Wang L, Wang J, et al. Role of microRNA-182 in posterior uveal melanoma: regulation of tumor development through MITF, BCL2 and cyclin D2. PLoS One 2012;7:e40967.Google Scholar

  • 26.

    Liu R, Li J, Teng Z, Zhang Z, Xu Y. Overexpressed microRNA-182 promotes proliferation and invasion in prostate cancer PC-3 cells by down-regulating N-myc downstream regulated gene 1 (NDRG1). PLoS One 2013;8:e68982.Google Scholar

  • 27.

    Stein S, Thomas EK, Herzog B, Westfall MD, Rocheleau JV, Jackson RS, 2nd, et al. NDRG1 is necessary for p53-dependent apoptosis. J Biol Chem 2004;279:48930–40.Google Scholar

  • 28.

    Fang M, Shen Z, Huang S, Zhao L, Chen S, Mak TW, et al. The ER UDPase ENTPD5 promotes protein N-glycosylation, the Warburg effect, and proliferation in the PTEN pathway. Cell 2010;143:711–24.Google Scholar

  • 29.

    Pizzini S, Bisognin A, Mandruzzato S, Biasiolo M, Facciolli A, Perilli L, et al. Impact of microRNAs on regulatory networks and pathways in human colorectal carcinogenesis and development of metastasis. BMC Genomics 2013;14:589.Web of ScienceCrossrefPubMedGoogle Scholar

  • 30.

    Mikula M, Rubel T, Karczmarski J, Goryca K, Dadlez M, Ostrowski J. Integrating proteomic and transcriptomic high-throughput surveys for search of new biomarkers of colon tumors. Funct Integr Genomics 2010 Nov 9. [Epub ahead of print].Web of ScienceGoogle Scholar

  • 31.

    Shi R, Chiang VL. Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 2005;39:519–25.CrossrefPubMedGoogle Scholar

  • 32.

    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25:402–8.Google Scholar

  • 33.

    Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 2008;3:1101–8.Web of ScienceCrossrefPubMedGoogle Scholar

  • 34.

    Camp RL, Dolled-Filhart M, Rimm DL. X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res 2004;10: 7252–9.CrossrefPubMedGoogle Scholar

  • 35.

    Nagtegaal ID, Quirke P, Schmoll HJ. Has the new TNM classification for colorectal cancer improved care? Nat Rev Clin Oncol 2012;9:119–23.Google Scholar

  • 36.

    Pierce ML, Weston MD, Fritzsch B, Gabel HW, Ruvkun G, Soukup GA. MicroRNA-183 family conservation and ciliated neurosensory organ expression. Evol Dev 2008;10:106–13.Web of ScienceGoogle Scholar

  • 37.

    Abraham D, Jackson N, Gundara JS, Zhao J, Gill AJ, Delbridge L, et al. MicroRNA profiling of sporadic and hereditary medullary thyroid cancer identifies predictors of nodal metastasis, prognosis, and potential therapeutic targets. Clin Cancer Res 2011;17:4772–81.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 38.

    Lin S, Sun JG, Wu JB, Long HX, Zhu CH, Xiang T, et al. Aberrant microRNAs expression in CD133(+)/CD326(+) human lung adenocarcinoma initiating cells from A549. Mol Cells 2012;33:277–83.Google Scholar

  • 39.

    Xu X, Dong Z, Li Y, Yang Y, Yuan Z, Qu X, et al. The upregulation of signal transducer and activator of transcription 5-dependent microRNA-182 and microRNA-96 promotes ovarian cancer cell proliferation by targeting forkhead box O3 upon leptin stimulation. Int J Biochem Cell Biol 2013;45:536–45.Web of ScienceGoogle Scholar

  • 40.

    Tsuchiyama K, Ito H, Taga M, Naganuma S, Oshinoya Y, Nagano K, et al. Expression of microRNAs associated with Gleason grading system in prostate cancer: miR-182-5p is a useful marker for high grade prostate cancer. Prostate 2013;73:827–34.Web of ScienceGoogle Scholar

  • 41.

    Hannafon BN, Sebastiani P, de las Morenas A, Lu J, Rosenberg CL. Expression of microRNA and their gene targets are dysregulated in preinvasive breast cancer. Breast Cancer Res 2011;13:R24.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 42.

    Yu J, Li A, Hong SM, Hruban RH, Goggins M. MicroRNA alterations of pancreatic intraepithelial neoplasias. Clin Cancer Res 2012;18:981–92.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 43.

    Piepoli A, Tavano F, Copetti M, Mazza T, Palumbo O, Panza A, et al. MiRNA expression profiles identify drivers in colorectal and pancreatic cancers. PLoS One 2012;7:e33663.CrossrefGoogle Scholar

  • 44.

    Sarver AL, French AJ, Borralho PM, Thayanithy V, Oberg AL, Silverstein KA, et al. Human colon cancer profiles show differential microRNA expression depending on mismatch repair status and are characteristic of undifferentiated proliferative states. BMC Cancer 2009;9:401.Web of ScienceCrossrefPubMedGoogle Scholar

  • 45.

    Huang Z, Huang D, Ni S, Peng Z, Sheng W, Du X. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer 2010;127:118–26.PubMedCrossrefGoogle Scholar

  • 46.

    Peltier HJ, Latham GJ. Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA 2008;14:844–52.Web of SciencePubMedCrossrefGoogle Scholar

  • 47.

    Formisano-Treziny C, de San Feliciano M, Gabert J. Development of plasmid calibrators for absolute quantification of miRNAs by using real-time qPCR. J Mol Diagn 2012;14:314–21.Web of ScienceCrossrefGoogle Scholar

About the article

Corresponding author: Andreas Scorilas, Department of Biochemistry and Molecular Biology, University of Athens, Panepistimiopolis, 15701 Athens, Greece, Phone: +30 2107274306, Fax: +30 2107274158, E-mail:


Received: 2013-11-03

Accepted: 2014-02-11

Published Online: 2014-03-08

Published in Print: 2014-08-01


Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), Volume 52, Issue 8, Pages 1217–1227, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/cclm-2013-0950.

Export Citation

©2014 by Walter de Gruyter Berlin/Boston.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Chung Wah Wu, Jared M. Evans, Shengbing Huang, Douglas W. Mahoney, Brian A. Dukek, William R. Taylor, Tracy C. Yab, Thomas C. Smyrk, Jin Jen, John B. Kisiel, and David A. Ahlquist
BMC Genomics, 2018, Volume 19, Number 1
[2]
Sotirios G. Papageorgiou, Christos K. Kontos, Marios A. Diamantopoulos, Anthi Bouchla, Eirini Glezou, Efthymia Bazani, Vasiliki Pappa, and Andreas Scorilas
Disease Markers, 2017, Volume 2017, Page 1
[3]
Michael Hollis
World Journal of Gastroenterology, 2015, Volume 21, Number 27, Page 8284
[4]
ERIC J. DEVOR, BRANDON M. SCHICKLING, HENRY D. REYES, AKSHAYA WARRIER, BRITTANY LINDSAY, MICHAEL J. GOODHEART, DONNA A. SANTILLAN, and KIMBERLY K. LESLIE
Oncology Reports, 2016, Volume 35, Number 4, Page 2461
[5]
Stamatia-Maria Rapti, Christos K. Kontos, Spyridon Christodoulou, Iordanis N. Papadopoulos, and Andreas Scorilas
Clinical Biochemistry, 2017
[6]
Christos K. Kontos, Panagiotis Tsiakanikas, Margaritis Avgeris, Iordanis N. Papadopoulos, and Andreas Scorilas
Molecular Diagnosis & Therapy, 2017, Volume 21, Number 4, Page 453
[7]
Dimitrios Kerimis, Christos K. Kontos, Spyridon Christodoulou, Iordanis N. Papadopoulos, and Andreas Scorilas
Clinical Biochemistry, 2017, Volume 50, Number 6, Page 285
[8]
Barbara Marzec-Kotarska, Marek Cybulski, Józef Czesław Kotarski, Anna Ronowicz, Rafał Tarkowski, Grzegorz Polak, Halina Antosz, Arkadiusz Piotrowski, and Jan Kotarski
Genes, Chromosomes and Cancer, 2016, Volume 55, Number 11, Page 877
[9]
Qing Wei, Rong Lei, and Guohong Hu
Thoracic Cancer, 2015, Volume 6, Number 1, Page 2
[10]
Yoshinaga Okugawa, Yuji Toiyama, and Ajay Goel
Expert Review of Molecular Diagnostics, 2014, Volume 14, Number 8, Page 999

Comments (0)

Please log in or register to comment.
Log in