Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter / Tate, Jillian R.

12 Issues per year


IMPACT FACTOR 2017: 3.556

CiteScore 2017: 2.34

SCImago Journal Rank (SJR) 2017: 1.114
Source Normalized Impact per Paper (SNIP) 2017: 1.188

Online
ISSN
1437-4331
See all formats and pricing
More options …
Volume 53, Issue 7

Issues

Development of the first urinary reproductive hormone ranges referenced to independently determined ovulation day

Sarah Johnson / Sarah Weddell / Sonya Godbert / Guenter Freundl
  • green-ivf, Grevenbroich Endocrinology- and IVF-Center and Department of Gynecology and Obstetrics, University of Cologne, Grevenbroich, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Judith Roos
  • green-ivf, Grevenbroich Endocrinology- and IVF-Center and Department of Gynecology and Obstetrics, University of Cologne, Grevenbroich, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christian Gnoth
  • green-ivf, Grevenbroich Endocrinology- and IVF-Center and Department of Gynecology and Obstetrics, University of Cologne, Grevenbroich, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-01-17 | DOI: https://doi.org/10.1515/cclm-2014-1087

Abstract

Background: Urinary hormone level analysis provides valuable fertility status information; however, previous studies have not referenced levels to the ovulation day, or have used outdated methods. This study aimed to produce reproductive hormone ranges referenced to ovulation day determined by ultrasound.

Methods: Women aged 18–40 years (no reported infertility) collected daily urine samples for one complete menstrual cycle. Urinary luteinising hormone (LH), estrone-3-glucuronide (E3G, an estradiol metabolite), follicle stimulating hormone (FSH) and pregnanediol-3-glucuronide (P3G, a progesterone metabolite) were measured using previously validated assays. Volunteers underwent trans-vaginal ultrasound every 2 days until the dominant ovarian follicle size reached 16 mm, when daily scans were performed until ovulation was observed. Data were analysed to create hormone ranges referenced to the day of objective ovulation as determined by ultrasound.

Results: In 40 volunteers, mean age 28.9 years, urinary LH surge always preceded ovulation with a mean of 0.81 days; thus LH is an excellent assay-independent predictor of ovulation. The timing of peak LH was assay-dependent and could be post-ovulatory; therefore should no longer be used to predict/determine ovulation. Urinary P3G rose from baseline after ovulation in all volunteers, peaking a median of 7.5 days following ovulation. Median urinary peak E3G and FSH levels occurred 0.5 days prior to ovulation. A persistent rise in urinary E3G was observed from approximately 3 days pre- until 5 days post-ovulation.

Conclusions: This study provides reproductive hormone ranges referenced to the actual day of ovulation as determined by ultrasound, to facilitate examination of menstrual cycle endocrinology.

Keywords: estrone-3-glucuronide; follicle stimulating hormone; hormone ranges; luteinising hormone; menstrual cycle; ovulation; pregnanediol-3-glucuronide

References

  • 1.

    Balasch J, Gratacós E. Delayed childbearing: effects on fertility and the outcome of pregnancy. Fetal Diagn Ther 2011;29:263–73.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 2.

    Heffner LJ. Advanced maternal age – how old is too old? N Engl J Med 2004;351:1924–9.Google Scholar

  • 3.

    Committee opinion No. 589. Female age-related fertility decline. Fertil Steril 2014;101:633–4.Google Scholar

  • 4.

    Lundsberg LS, Pal L, Gariepy AM, Xu X, Chu MC, Illuzzi LJ. Knowledge, attitudes, and practices regarding conception and fertility: a population-based survey among reproductive-age United States women. Fertil Steril 2014;101:767–74.Web of SciencePubMedCrossrefGoogle Scholar

  • 5.

    Gnoth C, Frank-Herrmann P, Schmoll A, Godehardt E, Freundl G. Cycle characteristics after discontinuation of oral contraceptives. Gynecol Endocrinol 2002;16:307–17.CrossrefPubMedGoogle Scholar

  • 6.

    Zinaman M, Johnson S, Ellis J, Ledger W. Accuracy of perception of ovulation day in women trying to conceive. CMRO 2012;28:1–6.Google Scholar

  • 7.

    Johnson SR, Miro F, Barrett S, Ellis J. Levels of urinary human chorionic gonadotrophin (hCG) following conception and variability of the menstrual cycle in a cohort of women attempting to conceive. CMRO 2009;25:741–8.CrossrefGoogle Scholar

  • 8.

    Creinin MD, Keverline S, Meyn LA. How regular is regular? An analysis of menstrual cycle regularity. Contraception 2004;70:289–92.CrossrefPubMedGoogle Scholar

  • 9.

    Wilcox AJ, Weinberg CR, Baird DD. Timing of sexual intercourse in relation to ovulation. N Engl J Med 1995;333:1517–21.Google Scholar

  • 10.

    Liu Y, Johnson WO, Gold EB, Lasley BL. Bayesian analysis of risk factors for anovulation. Stat Med 2004;23:1901–19.CrossrefPubMedGoogle Scholar

  • 11.

    Hambridge H, Mumford SL, Mattison DR, Ye A, Pollack AZ, Bloom MS, et al. The influence of sporadic anovulation on hormone levels in ovulatory cycles. Hum Reprod 2013;28:1687–94.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 12.

    Collins WP. The evolution of reference methods to monitor ovulation. Am J Obstet Gynecol 1991;165:1994–6.CrossrefPubMedGoogle Scholar

  • 13.

    Kassam A, Overstreet JW, Snow-Harter C, De Souza MJ, Gold EB, Lasley BL. Identification of anovulation and transient luteal function using a urinary pregnanediol-3-glucuronide ratio algorithm. Environ Health Perspect 1996;104:408–13.PubMedGoogle Scholar

  • 14.

    Blackwell LF, Vigil P, Cooke DG, d’Arcangues C, Brown JB. Monitoring of ovarian activity by daily measurement of urinary excretion rates of oestrone glucuronide and pregnanediol glucuronide using the Ovarian Monitor, Part III: variability of normal menstrual cycle profiles. Hum Reprod 2013;28:3306–15.Web of SciencePubMedCrossrefGoogle Scholar

  • 15.

    Stricker R, Eberhart R, Chevailler M, Quinn F, Bischof P, Stricker R. Establishment of detailed reference values for luteinizing hormone, follicle stimulating hormone, estradiol, and progesterone during different phases of the menstrual cycle on the Abbott ARCHITECT analyser. Clin Chem Lab Med 2006;44:883–7.Google Scholar

  • 16.

    Seibel M. Luteinizing hormone and ovulation timing. J Reprod Med 1986;31:754–9.PubMedGoogle Scholar

  • 17.

    Direito A, Bailly S, Mariani A, Ecochard R. Relationships between the luteinizing hormone surge and other characteristics of the menstrual cycle in normally ovulating women. Fertil Steril 2013;99:279–85.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 18.

    Ecochard R, Leiva R, Bouchard T, Boehringer H, Direito A, Mariani A, et al. Use of urinary pregnanediol 3-glucuronide to confirm ovulation. Steroids 2013;78:1035–40.Web of ScienceGoogle Scholar

  • 19.

    Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, et al. On behalf of the Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Body Mass Index). National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 2011;377:557–67.Web of ScienceGoogle Scholar

  • 20.

    Hahn KA, Wise LA, Riis AH, Mikkelsen EM, Rothman KJ, Banholzer K, et al. Correlates of menstrual cycle characteristics among nulliparous Danish women. Clin Epidemiol 2013;5:311–9.PubMedCrossrefGoogle Scholar

  • 21.

    Kerin JF, Edmonds D, Warnes G, Cox L, Seamark R, Mathews C, et al. Morphological and functional relations of Graafian follicle growth to ovulation in women using ultrasonic, laparoscopic and biochemical measurements. Br J Obstet Gynecol 1981;88:81–90.CrossrefGoogle Scholar

  • 22.

    Neven P, Iles RK, Howes I, Sharma K, Shepherd JH, Edwards R, et al. Substantial urinary concentrations of material resembling β-core fragment of chorionic gonadrotropin β-subunit in mid-menstrual cycle. Clin Chem 1993;39:1857–60.Google Scholar

  • 23.

    O’Connor JF, Kovalevskaya G, Birken S, Schlatterer JP, Schechter D, McMahon DJ, et al. The expression of the urinary forms of human luteinizing hormone beta fragment in various populations as assessed by a specific immunoradiometric assay. Hum Reprod 1998;13:826–35.CrossrefGoogle Scholar

  • 24.

    Kurowska E, Szewczuk A. Isolation of human lutropin from woman urine and comparison of its properties with pituitary hormone. Arch Immunol Ther Exp 1999;47:179–83.Google Scholar

  • 25.

    Birken S, Gawinowiz MA, Maydelman Y, Migrom Y. Metabolism of gonadotropins: comparison of the primary structures of the human pituitary and urinary LHβ cores and the chimpanzee CGβ core demonstrates universality of core production. J Endocrinol 2001;171:131–41.CrossrefGoogle Scholar

  • 26.

    Park SJ, Goldsmith LT, Skurnick JH, Wojtczuk A, Weiss G. Characteristics of the urinary luteinizing hormone surge in young ovulatory women. Fert Steril 2007;88:684–90.CrossrefGoogle Scholar

  • 27.

    Ecochard R, Boehringer H, Rabilloud M, Marret H. Chronological aspects of ultrasonic, hormonal, and other indirect indices of ovulation. Br J Obstet Gynecol 2001;108:822–9.Google Scholar

  • 28.

    Elkind-Hirsch K, Goldzieher JW, Gibbons WE, Besch PK. Evaluation of the Ovustick urinary luteinizing hormone kit in normal and stimulated menstrual cycles. Obstet Gynecol 1986;67:450–3.Google Scholar

  • 29.

    Gudgeon K, Leader L, Howard B. Evaluation of the accuracy of the home ovulation detection kit, Clearplan, at predicting ovulation. Med J Aust 1990;152:345–9.Google Scholar

  • 30.

    Guermandi E, Vegetti W, Bianchi MM, Uglietti A, Ragni G, Crosignani P. Reliability of ovulation tests in infertile women. Obstet Gynecol 2001;97:92–6.PubMedCrossrefGoogle Scholar

  • 31.

    Leiva R, Burhan U, Kyrillos E, Fehring R, McLaren R, Dalzell C, et al. Use of ovulation predictor kits as adjuncts when using fertility awareness methods (FAMs): a pilot study. J Am Board Fam Med 2014;27:427–9.Web of SciencePubMedCrossrefGoogle Scholar

  • 32.

    Miller PB, Soules MR. Ovulation prediction during menstrual cycles of normal women. Obstet Gynecol 1996;87:13–7.PubMedCrossrefGoogle Scholar

  • 33.

    Cervinski MA, Gronowski AM. Reproductive-endocrine point-of-care testing: current status and limitations. Clin Chem Lab Med 2010;48:935–42.Web of SciencePubMedGoogle Scholar

  • 34.

    Behre HM, Kuhlage J, Gassner C, Sonntage B, Schem C, Schneider HP, et al. Prediction of ovulation by urinary hormone measurements with the home use Clearblue Fertility Monitor: comparison with transvaginal ultrasound scans and serum hormone measurements. Hum Reprod 2000;12:2478–82.CrossrefGoogle Scholar

  • 35.

    Robinson J, Wakelin M, Ellis J. Increased pregnancy rate with use of Clearblue Easy Fertility Monitor. Fertil Steril 2007;87:329–34.CrossrefPubMedGoogle Scholar

  • 36.

    Gronowski AM, Grenache DG, Markenson G, Weiner R, Demers LM, St. Louis P. Evidence-based practice for point-of-care testing. In: Nichols JH, editor. Reproductive testing. Washington, DC: American Association for Clinical Chemistry (AACC) Press, 2006.Google Scholar

  • 37.

    Asunción M, Calvo RM, San Millán JL, Sancho J, Avila S, Escobar-Morreale HF. A prospective study of the prevalence of the polycystic ovary syndrome in unselected Caucasian women from Spain. J Clin Endocrinol Metab 2000;85:2434–8.Google Scholar

  • 38.

    Azziz R, Woods KS, Reyna R, Key TJ, Knochenhauer ES, Yildiz BO. The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocrinol Metab 2004;89:2745–9.CrossrefGoogle Scholar

  • 39.

    Diamanti-Kandarakis E, Kouli CR, Bergiele AT, Filandra FA, Tsianateli TC, Spina GG, et al. A survey of the polycystic ovary syndrome in the Greek island of Lesbos: hormonal and metabolic profile. J Clin Endocrinol Metab 1999;84:4006–11.CrossrefGoogle Scholar

  • 40.

    Knochenhauer ES, Key TJ, Kahsar-Miller M, Waggoner W, Boots LR, Azziz R. Prevalence of the polycystic ovary syndrome in unselected black and white women of the southeastern United States: a prospective study. J Clin Endocrinol Metab 1998;83:3078–82.PubMedGoogle Scholar

  • 41.

    Miro F, Coley J, Gani MM, Perry PW, Talbot D, Aspinall LJ. Comparison between creatinine and pregnanediol adjustments in the retrospective analysis of urinary hormone profiles during the human menstrual cycle. Clin Chem Lab Med 2004;42:1043–50.PubMedGoogle Scholar

  • 42.

    Zacur H, Kaufman SC, Smith B, Wshoff C, Helbig D, Lee YJ, et al. Does creatinine adjustment of urinary pregnanediol glucuronide reduce or introduce measurement error? Gynecol Endocrinol 1997;11:29–33.CrossrefPubMedGoogle Scholar

  • 43.

    Marsh EE, Shaw ND, Klingman KM, Tiamfook-Morgan TO, Yialamas MA, Sluss PM, et al. Estrogen levels are higher across the menstrual cycle in African-American women compared with Caucasian women. J Clin Endocrinol Metab 2011;96:3199–206.PubMedWeb of ScienceCrossrefGoogle Scholar

About the article

Corresponding author: Sarah Johnson, Head of Regulatory and Clinical Affairs, SPD Development Co., Ltd, Priory Business Park, Bedford, MK44 3UP, UK, Phone: +44 1234 835 486, Fax: +44 1234 835 006, E-mail:


Received: 2014-11-05

Accepted: 2014-12-11

Published Online: 2015-01-17

Published in Print: 2015-06-01


Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), Volume 53, Issue 7, Pages 1099–1108, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/cclm-2014-1087.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
María Elena Alliende, José Antonio Arraztoa, Ulises Guajardo, and Fernando Mellado
Frontiers in Public Health, 2018, Volume 6
[2]
Leonard F. Blackwell, Delwyn G. Cooke, and Simon Brown
Frontiers in Public Health, 2018, Volume 6
[3]
Sarah Johnson, Lorrae Marriott, and Michael Zinaman
Current Medical Research and Opinion, 2018, Page 1
[4]
Lindsey M Russo, Brian W Whitcomb, Sunni L Mumford, Marquis Hawkins, Rose G Radin, Karen C Schliep, Robert M Silver, Neil J Perkins, Keewan Kim, Ukpebo R Omosigho, Daniel L Kuhr, Tiffany L Holland, Lindsey A Sjaarda, and Enrique F Schisterman
Human Reproduction, 2018
[5]
Leonard Blackwell, Delwyn Cooke, and Simon Brown
The Linacre Quarterly, 2018, Volume 85, Number 1, Page 26
[6]
Lindsey A. Sjaarda, Sunni L. Mumford, Daniel L. Kuhr, Tiffany L. Holland, Robert M. Silver, Torie C. Plowden, Neil J. Perkins, and Enrique F. Schisterman
Fertility and Sterility, 2018
[7]
Rene Antonio Leiva, Thomas Paul Bouchard, Saman Hasan Abdullah, and René Ecochard
Frontiers in Public Health, 2017, Volume 5
[8]
Julia Schiffner, Judith Roos, David Broomhead, Joseph van Helden, Erhard Godehardt, Daniel Fehr, Günter Freundl, Sarah Johnson, and Christian Gnoth
Clinical Chemistry and Laboratory Medicine (CCLM), 2017, Volume 55, Number 7
[9]
Jan E. Binnie, Delwyn G. Cooke, and Leonard F. Blackwell
Journal of Immunoassay and Immunochemistry, 2017, Volume 38, Number 2, Page 202
[10]
Judith Roos, Sarah Johnson, Sarah Weddell, Erhard Godehardt, Julia Schiffner, Günter Freundl, and Christian Gnoth
The European Journal of Contraception & Reproductive Health Care, 2015, Volume 20, Number 6, Page 438
[11]
Christian Gnoth, Judith Roos, David Broomhead, Julia Schiffner, Erhard Godehardt, Günter Freundl, and Sarah Johnson
Fertility and Sterility, 2015, Volume 104, Number 6, Page 1535

Comments (0)

Please log in or register to comment.
Log in