Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Greaves, Ronda / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter


IMPACT FACTOR 2018: 3.638

CiteScore 2018: 2.44

SCImago Journal Rank (SJR) 2018: 1.191
Source Normalized Impact per Paper (SNIP) 2018: 1.205

Online
ISSN
1437-4331
See all formats and pricing
More options …
Volume 53, Issue 9

Issues

Erroneous HbA1c measurements in the presence of β-thalassemia and common Chinese hemoglobin variants

Ling Ji
  • Corresponding author
  • Clinical Medical Laboratory of Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jing Yu
  • Clinical Medical Laboratory of Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yu Zhou
  • Clinical Medical Laboratory of Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yong Xia
  • Clinical Medical Laboratory of Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anping Xu
  • Clinical Medical Laboratory of Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Weining Li
  • Clinical Medical Laboratory of Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lu Li
  • Clinical Medical Laboratory of Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-01-13 | DOI: https://doi.org/10.1515/cclm-2014-0598

Abstract

Background: HbA1c is a widely used biomarker for the management of diabetes mellitus and can be quantified from blood samples by using various methods, including ion-exchange high-performance liquid chromatography (HPLC), boronate affinity HPLC, and capillary electrophoresis (CE). Here, we evaluated the accuracy of four separation methods for determination of HbA1c values in Chinese patients with different hemoglobin disorders.

Methods: Blood samples from normal patients, patients with β-thalassemia, patients exhibiting heterozygosity, and patients exhibiting homozygosity were analyzed using ion-exchange HPLC (Variant II Turbo, Bio-Rad and Adams A1c HA-8160, Arkray, run in diabetes mode), boronate affinity HPLC (Ultra2, Trinity Biotech), and CE (Capillarys 2 Flex Piercing, Sebia).

Results: Samples from patients with β-thalassemia produced significant positive biases on the Variant II Turbo system compared to the other three systems. For heterozygous βA/βE patients, a good agreement was observed between Capillarys 2 Flex Piercing and Ultra2 systems, while a significant negative bias was observed between HA-8160 and Capillarys 2 Flex Piercing systems and between Variant II Turbo and Capillarys 2 Flex Piercing systems. For homozygous (βE/βE) patients, a clear context without HbA, all systems except the Capillarys 2 Flex Piercing system yielded random HbA1c results. Only the Capillarys 2 Flex Piercing system could detect all hemoglobin variants tested.

Conclusions: β-Thalassemia can cause errors in HbA1c determination using the Variant II Turbo system. HbE heterozygosity or HbE homozygosity also complicated HbA1c measurements. The Capillarys 2 Flex Piercing system detected all Hb variants and HbA1c in patients with β-thalassemia and could provide measurements with high accuracy.

Keywords: boronate affinity HPLC; capillary electrophoresis; HbA1c; hemoglobin variants; ion-exchange HPLC; β-thalassemia

References

  • 1.

    The Diabetes Control Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993;329:977–86.Google Scholar

  • 2.

    UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS33). Lancet 1998;352:837–53.Google Scholar

  • 3.

    Sacks DB, Bruns DE, Goldstein DE, Maclaren NK, McDonald JM, Parrott M. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin Chem 2002;48:436–72.PubMedGoogle Scholar

  • 4.

    Nathan DM, Balkau B, Bonora E, Borch-Johnsen K, Buse JB, Colagiuri S, et al. International Expert Committee report on the role of the A1c assay in the diagnosis of diabetes. Diabetes Care 2009;32:1327–34.CrossrefGoogle Scholar

  • 5.

    Sacks DB, Arnold M, Bakris GL, Bruns DE, Horvath AR, Kirkman MS, et al. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Diabetes Care 2011;34:e61–99.Web of ScienceCrossrefGoogle Scholar

  • 6.

    Weykamp CW, John WG, Mosca A. A review of the challenge in measuring hemoglobin A1c. J Diabetes Sci Technol 2009;3:439–45.CrossrefPubMedGoogle Scholar

  • 7.

    Weykamp CW. HbA1c: a review of analytical and clinical aspects. Ann Lab Med 2013;33:393–400.CrossrefPubMedGoogle Scholar

  • 8.

    Little RR, Rohlfing CL, Sacks DB. Status of hemoglobin A1c measurement and goals for improvement: from chaos to order for improving diabetes care. Clin Chem 2011;57:205–14.Web of ScienceCrossrefGoogle Scholar

  • 9.

    Mosca A, Goodall I, Hoshino T, Jeppsson JO, John WG, Little RR, et al. Global standardization of glycated hemoglobin measurement: the position of the IFCC Working Group. Clin Chem Lab Med 2007;45:1077–80.CrossrefPubMedGoogle Scholar

  • 10.

    Rhea JM, Koch D, Ritchie J, Singh HV, Young AN, Burgess T, et al. Unintended reporting of misleading HbA1c values when using assays incapable of detecting hemoglobin variants. Arch Pathol Lab Med 2013;137:1788–91.Web of ScienceCrossrefGoogle Scholar

  • 11.

    Wiwanitkit V. Problem of using hemoglobin A1c measurement in endemic area of hemoglobinopathy. Prim Care Diabetes 2007;1:173–5.Google Scholar

  • 12.

    Lee ST, Kim MS, Choi DY, Kim SK, Ki CS. Incidence of variant hemoglobin (Hb) and increased fetal Hb concentrations and their effect on HbA1c measurement in a Korean population. Clin Chem 2006;52:1445–6.CrossrefGoogle Scholar

  • 13.

    Schnedl WJ, Krause R, Piswanger-Soelkner C, Lipp RW. Effect of silent hemoglobin variants on A1c measurement with the IFCC reference method and 6 routine methods. Clin Chim Acta 2008;398:161–2.Web of ScienceGoogle Scholar

  • 14.

    Little RR, Roberts W. A review of variant hemoglobins interfering with hemoglobin A1c measurement. J Diabetes Sci Technol 2009;3:446–51.PubMedCrossrefGoogle Scholar

  • 15.

    Zhu Y, Williams L. Falsely elevated hemoglobin A1c due to S-β+-thalassemia interference in Bio-Rad Variant II Turbo HbA1c assay. Clin Chim Acta 2009;40918–20.Web of ScienceGoogle Scholar

  • 16.

    Little RR, Rohlfing CL, Hanson S, Connolly S, Higgins T, Weykamp CW, et al. Effects of hemoglobin HbE and HbD traits on measurements of glycated Hb (HbA1c) by 23 methods. Clin Chem 2008;54:1277–82.PubMedCrossrefGoogle Scholar

  • 17.

    Jaisson S, Leroy N, Desroches C, Tonye-Libyh M, Guillard E, Gillery P. Interference of the most frequent haemoglobin variants on quantification of HbA1c: comparison between the LC–MS (IFCC reference method) and three routinely used methods. Diabetes Metab 2013;39:363–9.Web of ScienceCrossrefPubMedGoogle Scholar

  • 18.

    Prindle KH Jr, McCurdy PR. Red cell lifespan in hemoglobin C disorders (with special reference to hemoglobin C trait). Blood 1970;36:14–9.PubMedGoogle Scholar

  • 19.

    Polage C, Little RR, Rohlfing CL, Cole TG, Roberts WL. Effects of beta thalassemia minor on results of six glycohemoglobin methods. Clin Chim Acta 2004;350;123–8.Google Scholar

  • 20.

    McCurdy PR. 32-DFP and 51-Cr for measurement of red cell life span in abnormal hemoglobin syndromes. Blood 1969;33:214–24.Google Scholar

  • 21.

    Gallo E, Pich P, Ricco G, Saglio G, Camaschella C, Mazza U. The relationship between anemia, fecal stercobilinogen, erythrocyte survival, and globin synthesis in heterozygotes for beta-thalassemia. Blood 1975;46:693–8.PubMedGoogle Scholar

  • 22.

    American Diabetes Association. Standards of Medical Care in Diabetes 2013. Diabetes Care 2013;36(Suppl 1):S11–66.Google Scholar

  • 23.

    Chen W, Zhang X, Shang X, Cai R, Li L, Zhou T, et al. The molecular basis of beta-thalassemia intermedia in southern China: genotypic heterogeneity and phenotypic diversity. BMC Med Genet 2010;11:31.Web of ScienceCrossrefPubMedGoogle Scholar

  • 24.

    Stephens AD, Angastiniotis M, Baysal E, Chan V, Fucharoen F, Giordano PC, et al. ICSH recommendations for the measurement of HbA2. Int J Lab Hematol 2012;34:1–13.PubMedCrossrefGoogle Scholar

  • 25.

    Urrechaga E. High-resolution HbA1c separation and hemoglobinopathy detection with capillary electrophoresis. Am J Clin Pathol 2012;138:448–56.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 26.

    Little RR, Vesper H, Rohlfing CL, Ospina M, Safar-Pour S, Roberts WL. Validation by a mass spectrometric reference method of use of boronate affinity chromatography to measure glycohemoglobin in the presence of hemoglobin S and C traits. Clin Chem 2005;51:264–5.CrossrefPubMedGoogle Scholar

  • 27.

    Lin CN, Emery TJ, Little RR, Hanson SE, Rohlfing CL, Jaisson S, et al. Effects of hemoglobin C, D, E, and S traits on measurements of HbA1c by six methods. Clin Chim Acta 2012;413:819–21.Web of ScienceGoogle Scholar

  • 28.

    Sthaneshwar P, Shanmugam H, Swan VG, Nasurdin N, Tanggaiah K. Effect of HbE heterozygosity on the measurement of HbA1c. Pathology 2013;45:417–9.CrossrefWeb of ScienceGoogle Scholar

  • 29.

    Jaisson S, Leroy N, Meurice J, Guillard E, Gillery P. First evaluation of Capillarys 2 Flex Piercing (Sebia) as a new analyzer for HbA1c assay by capillary electrophoresis. Clin Chem Lab Med 2012;50:1769–52.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 30.

    Marinova M, Altinier S, Caldini A, Passerini G, Pizzagalli G, Brogi M, et al. Multicenter evaluation of hemoglobin A1c assay on capillary electrophoresis. Clin Chim Acta 2013;424: 207–11.Web of ScienceGoogle Scholar

  • 31.

    Weykamp CW, Waenink-Wieggers H, Kemna E, Siebelder C. HbA1c: performance of the Sebia Capillarys 2 Flex Piercing. Clin Chem Lab Med 2013;51:e129–31.CrossrefWeb of ScienceGoogle Scholar

  • 32.

    Li HJ, Zhao XN, Qin F, Li HW, Li L, He XJ, et al. Abnormal hemoglobins in the Silk Road region of China. Hum Genet 1990;86:231–5.PubMedCrossrefGoogle Scholar

  • 33.

    Blackwell RQ, Ro IH, Liu CS, Yang HJ, Wang CC, Huang JT. Hemoglobin variant found in Koreans, Chinese, and North American Indians: alpha-2 beta-2 22 Glu Ala. Am J Phys Anthropol 1969;30:389–91.PubMedGoogle Scholar

  • 34.

    Lee ST, Weykamp CW, Lee YW, Kim JW, Ki CS. Effects of 7 hemoglobin variants on the measurement of glycohemoglobin by 14 analytical methods. Clin Chem 2007;53:2202–5.CrossrefGoogle Scholar

  • 35.

    Erali M, Pounder JI, Woods GL, Petti CA, Wittwer CT. Incidence of variant hemoglobin (Hb) and increased fetal Hb concentrations and their effect on HbA1c measurement in a Korean Population. Clin Chem 2006;52:1445–6.CrossrefGoogle Scholar

  • 36.

    Rhea JM, Roberts-Wilson TK, Molinaro RJ. Impact of hemoglobin variants on HbA1c interpretation: do we assume too much? MLO Med Lab Obs 2012;44:8, 10, 12, 14.PubMedGoogle Scholar

About the article

Corresponding author: Ling Ji, Clinical Medical Laboratory of Peking University Shenzhen Hospital, 1120 Lianhua Road Futian, Shenzhen, Guangdong, 518036, P.R. China, E-mail:


Received: 2014-06-06

Accepted: 2014-12-08

Published Online: 2015-01-13

Published in Print: 2015-08-01


Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), Volume 53, Issue 9, Pages 1451–1458, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/cclm-2014-0598.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
D. Tsilingiris, K. Makrilakis, E. Voskaridou, S. Pagkrati, M. Dalamaga, and S. Liatis
Clinica Chimica Acta, 2019, Volume 494, Page 132
[2]
Jie Li, Jie Lei, An-ping Xu, Yong Xia, and Ling Ji
Diabetes Care, 2019, Volume 42, Number 1, Page e9
[4]
Peifeng Ke, Jiawei Liu, Yan Chao, Xiaobin Wu, Yujuan Xiong, Li Lin, Zemin Wan, Xinzhong Wu, Jianhua Xu, Junhua Zhuang, and Xianzhang Huang
Biochemia Medica, 2017, Volume 27, Number 3
[5]
Xiu-Ming Zhang, Dong-Mei Wen, Sheng-Nan Xu, Ming-Huan Suo, and Ya-Qiong Chen
Journal of Clinical Laboratory Analysis, 2017, Page e22214
[6]
Valéry Brunel, Patrick Caneiro, Agnès Lahary, Guy Hue, and Christian Thuillez
Annals of Laboratory Medicine, 2016, Volume 36, Number 4, Page 375
[7]
Giuseppe Lippi and Mario Plebani
Clinical Chemistry and Laboratory Medicine (CCLM), 2016, Volume 54, Number 1
[8]
Weiping Jia
Expert Review of Molecular Diagnostics, 2016, Volume 16, Number 3, Page 343
[9]
Philippe Gillery
Clinical Chemistry and Laboratory Medicine (CCLM), 2015, Volume 53, Number 9

Comments (0)

Please log in or register to comment.
Log in