Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter / Tate, Jillian R.

12 Issues per year


IMPACT FACTOR 2017: 3.556

CiteScore 2017: 2.34

SCImago Journal Rank (SJR) 2017: 1.114
Source Normalized Impact per Paper (SNIP) 2017: 1.188

Online
ISSN
1437-4331
See all formats and pricing
More options …
Volume 54, Issue 2

Issues

mRNA overexpression of kallikrein-related peptidase 14 (KLK14) is an independent predictor of poor overall survival in chronic lymphocytic leukemia patients

Christos K. Kontos / Panagiotis G. Adamopoulos / Sotirios G. Papageorgiou
  • Second Department of Internal Medicine, Propaedeutic, Hematology Unit, University of Athens, University General Hospital “Attikon”, Athens, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vassiliki Pappa
  • Second Department of Internal Medicine, Propaedeutic, Hematology Unit, University of Athens, University General Hospital “Attikon”, Athens, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andreas Scorilas
Published Online: 2015-07-21 | DOI: https://doi.org/10.1515/cclm-2015-0456

Abstract

Background: Tissue kallikrein and kallikrein-related peptidases (KLKs) compose a family of serine endopeptidases with much clinical interest in oncology, as their potential as diagnostic and/or prognostic molecular biomarkers in several human malignancies has already been evidenced. However, none of the members of this family has ever been studied in hematological malignancies. Based on our preliminary results regarding the differential mRNA expression of several KLK genes in peripheral blood mononuclear cells (PBMCs) of patients with chronic lymphocytic leukemia (CLL) compared to healthy blood donors, we decided to study the diagnostic and prognostic potential of KLK14 mRNA expression in CLL.

Methods: Total RNA was isolated from 69 CLL patients and 31 non-leukemic blood donors. After reverse transcription of poly(A)-RNA, KLK14 mRNA levels were quantified using a sensitive and accurate quantitative real-time PCR (qPCR) methodology.

Results: According to ROC analysis, KLK14 mRNA overexpression successfully discriminated CLL patients from normal population (area under the curve [AUC] 0.89, 95% confidence interval [CI] 0.83–0.95, p<0.001). Moreover, although not clearly related to clinical staging or other prognostic factors including IGHV mutational status and CD38 expression, strong KLK14 mRNA expression was shown to predict reduced overall survival of CLL patients (p=0.026) using Kaplan-Meier survival analysis. The unfavorable prognostic value of KLK14 mRNA overexpression in CLL patients’ PBMCs was independent of established prognostic factors of the disease, as shown by multivariate Cox regression analysis (hazard ratio [HR] 14.65, 95% CI 1.81–118.36, p=0.012).

Conclusions: KLK14 mRNA expression merits further investigation as a potential prognostic biomarker of overall survival of patients with CLL.

This article offers supplementary material which is provided at the end of the article.

Keywords: chronic lymphocytic leukemia (CLL); kallikreins; KLK14; prognostic biomarker; quantitative real-time PCR; tumor marker; unfavorable prognosis

References

  • 1.

    Campregher PV, Hamerschlak N. Novel prognostic gene mutations identified in chronic lymphocytic leukemia and their impact on clinical practice. Clin Lymphoma Myeloma Leuk 2014;14:271–6.CrossrefGoogle Scholar

  • 2.

    Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood 2008;111:5446–56.CrossrefGoogle Scholar

  • 3.

    Rai KR, Sawitsky A, Cronkite EP, Chanana AD, Levy RN, Pasternack BS. Clinical staging of chronic lymphocytic leukemia. Blood 1975;46:219–34.Google Scholar

  • 4.

    Binet JL, Auquier A, Dighiero G, Chastang C, Piguet H, Goasguen J, et al. A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer 1981;48:198–206.CrossrefGoogle Scholar

  • 5.

    Moreno C, Montserrat E. New prognostic markers in chronic lymphocytic leukemia. Blood Rev 2008;22:211–9.CrossrefGoogle Scholar

  • 6.

    Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999;94:1848–54.Google Scholar

  • 7.

    Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999;94:1840–7.Google Scholar

  • 8.

    Ibrahim S, Keating M, Do KA, O’Brien S, Huh YO, Jilani I, et al. CD38 expression as an important prognostic factor in B-cell chronic lymphocytic leukemia. Blood 2001;98:181–6.CrossrefGoogle Scholar

  • 9.

    Crespo M, Bosch F, Villamor N, Bellosillo B, Colomer D, Rozman M, et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med 2003;348:1764–75.Google Scholar

  • 10.

    Orchard JA, Ibbotson RE, Davis Z, Wiestner A, Rosenwald A, Thomas PW, et al. ZAP-70 expression and prognosis in chronic lymphocytic leukaemia. Lancet 2004;363:105–11.Google Scholar

  • 11.

    Penney KL, Schumacher FR, Kraft P, Mucci LA, Sesso HD, Ma J, et al. Association of KLK3 (PSA) genetic variants with prostate cancer risk and PSA levels. Carcinogenesis 2011;32:853–9.CrossrefGoogle Scholar

  • 12.

    Lose F, Srinivasan S, O’Mara T, Marquart L, Chambers S, Gardiner RA, et al. Genetic association of the KLK4 locus with risk of prostate cancer. PLoS One 2012;7:e44520.Google Scholar

  • 13.

    Korbakis D, Gregorakis AK, Scorilas A. Quantitative analysis of human kallikrein 5 (KLK5) expression in prostate needle biopsies: an independent cancer biomarker. Clin Chem 2009;55:904–13.CrossrefGoogle Scholar

  • 14.

    Avgeris M, Papachristopoulou G, Polychronis A, Scorilas A. Down-regulation of kallikrein-related peptidase 5 (KLK5) expression in breast cancer patients: a biomarker for the differential diagnosis of breast lesions. Clin Proteomics 2011;8:5.Google Scholar

  • 15.

    Yousef GM, Scorilas A, Kyriakopoulou LG, Rendl L, Diamandis M, Ponzone R, et al. Human kallikrein gene 5 (KLK5) expression by quantitative PCR: an independent indicator of poor prognosis in breast cancer. Clin Chem 2002;48:1241–50.Google Scholar

  • 16.

    Iakovlev V, Siegel ER, Tsao MS, Haun RS. Expression of kallikrein-related peptidase 7 predicts poor prognosis in patients with unresectable pancreatic ductal adenocarcinoma. Cancer Epidemiol Biomarkers Prev 2012;21:1135–42.Google Scholar

  • 17.

    Psyrri A, Kountourakis P, Scorilas A, Markakis S, Camp R, Kowalski D, et al. Human tissue kallikrein 7, a novel biomarker for advanced ovarian carcinoma using a novel in situ quantitative method of protein expression. Ann Oncol 2008;19:1271–7.CrossrefGoogle Scholar

  • 18.

    Planque C, Choi YH, Guyetant S, Heuze-Vourc’h N, Briollais L, Courty Y. Alternative splicing variant of kallikrein-related peptidase 8 as an independent predictor of unfavorable prognosis in lung cancer. Clin Chem 2010;56:987–97.Google Scholar

  • 19.

    Yousef GM, Magklara A, Chang A, Jung K, Katsaros D, Diamandis EP. Cloning of a new member of the human kallikrein gene family, KLK14, which is down-regulated in different malignancies. Cancer Res 2001;61:3425–31.Google Scholar

  • 20.

    Devetzi M, Trangas T, Scorilas A, Xynopoulos D, Talieri M. Parallel overexpression and clinical significance of kallikrein-related peptidases 7 and 14 (KLK7KLK14) in colon cancer. Thromb Haemost 2013;109:716–25.Google Scholar

  • 21.

    Papachristopoulou G, Avgeris M, Charlaftis A, Scorilas A. Quantitative expression analysis and study of the novel human kallikrein-related peptidase 14 gene (KLK14) in malignant and benign breast tissues. Thromb Haemost 2011;105:131–7.Google Scholar

  • 22.

    Yousef GM, Stephan C, Scorilas A, Ellatif MA, Jung K, Kristiansen G, et al. Differential expression of the human kallikrein gene 14 (KLK14) in normal and cancerous prostatic tissues. Prostate 2003;56:287–92.CrossrefGoogle Scholar

  • 23.

    Fritzsche F, Gansukh T, Borgono CA, Burkhardt M, Pahl S, Mayordomo E, et al. Expression of human Kallikrein 14 (KLK14) in breast cancer is associated with higher tumour grades and positive nodal status. Br J Cancer 2006;94:540–7.CrossrefGoogle Scholar

  • 24.

    Yousef GM, Fracchioli S, Scorilas A, Borgono CA, Iskander L, Puopolo M, et al. Steroid hormone regulation and prognostic value of the human kallikrein gene 14 in ovarian cancer. Am J Clin Pathol 2003;119:346–55.CrossrefGoogle Scholar

  • 25.

    Gratio V, Loriot C, Virca GD, Oikonomopoulou K, Walker F, Diamandis EP, et al. Kallikrein-related peptidase 14 acts on proteinase-activated receptor 2 to induce signaling pathway in colon cancer cells. Am J Pathol 2011;179:2625–36.Google Scholar

  • 26.

    Luo LY, Yousef G, Diamandis EP. Human tissue kallikreins and testicular cancer. APMIS 2003;111:225–32; discussion 32–3.CrossrefGoogle Scholar

  • 27.

    Cheson BD, Bennett JM, Grever M, Kay N, Keating MJ, O’Brien S, et al. National Cancer Institute-sponsored Working Group guidelines for chronic lymphocytic leukemia: revised guidelines for diagnosis and treatment. Blood 1996;87:4990–7.Google Scholar

  • 28.

    Hamblin TJ, Orchard JA, Ibbotson RE, Davis Z, Thomas PW, Stevenson FK, et al. CD38 expression and immunoglobulin variable region mutations are independent prognostic variables in chronic lymphocytic leukemia, but CD38 expression may vary during the course of the disease. Blood 2002;99:1023–9.CrossrefGoogle Scholar

  • 29.

    Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers MH. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 1994;84:1415–20.Google Scholar

  • 30.

    Ghia P, Stamatopoulos K, Belessi C, Moreno C, Stella S, Guida G, et al. Geographic patterns and pathogenetic implications of IGHV gene usage in chronic lymphocytic leukemia: the lesson of the IGHV3-21 gene. Blood 2005;105:1678–85.CrossrefGoogle Scholar

  • 31.

    Lefranc MP, Giudicelli V, Kaas Q, Duprat E, Jabado-Michaloud J, Scaviner D, et al. IMGT, the international ImMunoGeneTics information system. Nucleic Acids Res 2005;33:D593–7.CrossrefGoogle Scholar

  • 32.

    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25:402–8.Google Scholar

  • 33.

    Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 2008;3:1101–8.CrossrefGoogle Scholar

  • 34.

    de Lima M, O’Brien S, Lerner S, Keating MJ. Chronic lymphocytic leukemia in the young patient. Semin Oncol 1998;25:107–16.Google Scholar

  • 35.

    Rozman C, Montserrat E. Chronic lymphocytic leukemia. N Engl J Med 1995;333:1052–7.Google Scholar

  • 36.

    Kipps TJ. Chronic lymphocytic leukemia. Curr Opin Hematol 2000;7:223–34.CrossrefGoogle Scholar

  • 37.

    Kontos CK, Scorilas A. Kallikrein-related peptidases (KLKs): a gene family of novel cancer biomarkers. Clin Chem Lab Med 2012;50:1877–91.CrossrefGoogle Scholar

  • 38.

    Adamopoulos PG, Kontos CK, Papageorgiou SG, Pappa V, Scorilas A. KLKB1 mRNA overexpression: a novel molecular biomarker for the diagnosis of chronic lymphocytic leukemia. Clin Biochem [Epub ahead of print 2015 Apr 17]. doi: 10.1016/j.clinbiochem.2015.04.007.CrossrefGoogle Scholar

  • 39.

    Gratio V, Beaufort N, Seiz L, Maier J, Virca GD, Debela M, et al. Kallikrein-related peptidase 4: a new activator of the aberrantly expressed protease-activated receptor 1 in colon cancer cells. Am J Pathol 2010;176:1452–61.Google Scholar

  • 40.

    Veiga Cde S, Carneiro-Lobo TC, Coelho CJ, Carvalho SM, Maia RC, Vasconcelos FC, et al. Increased expression of protease-activated receptor 1 (PAR-1) in human leukemias. Blood Cells Mol Dis 2011;46:230–4.CrossrefGoogle Scholar

  • 41.

    Hashem NN, Mara TW, Mohamed M, Zhang I, Fung K, Kwan KF, et al. Human kallikrein 14 (KLK14) expression in salivary gland tumors. Int J Biol Marker 2010;25:32–7.Google Scholar

  • 42.

    Malek S. Molecular biomarkers in chronic lymphocytic leukemia. Adv Exp Med Biol 2013;792:193–214.Google Scholar

  • 43.

    Del Principe MI, Del Poeta G, Buccisano F, Maurillo L, Venditti A, Zucchetto A, et al. Clinical significance of ZAP-70 protein expression in B-cell chronic lymphocytic leukemia. Blood 2006;108:853–61.Google Scholar

  • 44.

    Swords R, Bruzzi J, Giles F. Recent advances in the diagnosis and therapy of Richter’s syndrome. Med Oncol 2007;24:17–32.CrossrefGoogle Scholar

  • 45.

    Yousef GM, Borgono CA, Scorilas A, Ponzone R, Biglia N, Iskander L, et al. Quantitative analysis of human kallikrein gene 14 expression in breast tumours indicates association with poor prognosis. Br J Cancer 2002;87:1287–93.CrossrefGoogle Scholar

  • 46.

    Roisman A, Stanganelli C, Nagore VP, Richardson GV, Scassa ME, Bezares RF, et al. SOX11 expression in chronic lymphocytic leukemia correlates with adverse prognostic markers. Tumour Biol [Epub ahead of print 2015 Jan 22]. doi: 10.1007/s13277-015-3083-1.CrossrefGoogle Scholar

  • 47.

    Lai HC, Wang YC, Yu MH, Huang RL, Yuan CC, Chen KJ, et al. DNA methylation as a biomarker for the detection of hidden carcinoma in endometrial atypical hyperplasia. Gynecol Oncol 2014;135:552–9.Google Scholar

  • 48.

    Kyrtsonis MC, Sarris K, Koulieris E, Maltezas D, Nikolaou E, Angelopoulou MK, et al. Serum soluble TACI, a BLyS receptor, is a powerful prognostic marker of outcome in chronic lymphocytic leukemia. Biomed Res Int 2014;2014:159632.Google Scholar

  • 49.

    Pelekanou V, Notas G, Kampa M, Tsentelierou E, Stathopoulos EN, Tsapis A, et al. BAFF, APRIL, TWEAK, BCMA, TACI and Fn14 proteins are related to human glioma tumor grade: immunohistochemistry and public microarray data meta-analysis. PLoS One 2013;8:e83250.Google Scholar

  • 50.

    Attia MA, Nosair NA, Gawally A, Elnagar G, Elshafey EM. HLA-G expression as a prognostic indicator in B-cell chronic lymphocytic leukemia. Acta Haematol 2014;132:53–8.CrossrefGoogle Scholar

  • 51.

    Van Damme M, Crompot E, Meuleman N, Mineur P, Dessars B, El Housni H, et al. Global histone deacetylase enzymatic activity is an independent prognostic marker associated with a shorter overall survival in chronic lymphocytic leukemia patients. Epigenetics 2014;9:1374–81.CrossrefGoogle Scholar

  • 52.

    Stamatopoulos B, Van Damme M, Crompot E, Dessars B, El Housni H, Mineur P, et al. Opposite prognostic significance of cellular and serum circulating microRNA-150 in chronic lymphocytic leukemia patients. Mol Med 2015;21:123–33.CrossrefGoogle Scholar

  • 53.

    Truger MS, Jeromin S, Weissmann S, Dicker F, Kern W, Schnittger S, et al. Accumulation of adverse prognostic markers worsens prognosis in chronic lymphocytic leukaemia. Br J Haematol 2015;168:153–6.CrossrefGoogle Scholar

  • 54.

    Tam CS, Seymour JF. A new prognostic score for CLL. Blood 2014;124:1–2.CrossrefGoogle Scholar

About the article

Corresponding author: Andreas Scorilas, Department of Biochemistry and Molecular Biology, University of Athens, Panepistimiopolis, 15701 Athens, Greece, Phone: +30 2107274306, Fax: +30 2107274158, E-mail:


Received: 2015-05-14

Accepted: 2015-06-24

Published Online: 2015-07-21

Published in Print: 2016-02-01


Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), Volume 54, Issue 2, Pages 315–324, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/cclm-2015-0456.

Export Citation

©2016 by De Gruyter.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Sotirios G. Papageorgiou, Christos K. Kontos, Marios A. Diamantopoulos, Anthi Bouchla, Eirini Glezou, Efthymia Bazani, Vasiliki Pappa, and Andreas Scorilas
Disease Markers, 2017, Volume 2017, Page 1
[2]
Christos K. Kontos, Sotirios G. Papageorgiou, Marios A. Diamantopoulos, Andreas Scorilas, Efthimia Bazani, Diamantina Vasilatou, Konstantinos Gkontopoulos, Eirini Glezou, Georgia Stavroulaki, George Dimitriadis, and Vasiliki Pappa
Leukemia Research, 2017, Volume 53, Page 65

Comments (0)

Please log in or register to comment.
Log in