Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Greaves, Ronda / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter

IMPACT FACTOR 2017: 3.556

CiteScore 2017: 2.34

SCImago Journal Rank (SJR) 2017: 1.114
Source Normalized Impact per Paper (SNIP) 2017: 1.188

See all formats and pricing
More options …
Volume 54, Issue 6


Is accuracy of serum free light chain measurement achievable?

Joannes F.M. Jacobs
  • Corresponding author
  • Radboud University Medical Center, Department of Laboratory Medicine, Laboratory Medical Immunology, Geert Grooteplein 10 (route 469), 6525 GA Nijmegen, The Netherlands
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jillian R. Tate
  • Pathology Queensland, Department of Chemical Pathology, Royal Brisbane and Women’s Hospital, Herston, Qld, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Giampaolo Merlini
  • Department of Molecular Medicine, University of Pavia, Amyloidosis Research and Treatment Center, Pavia, Scientific Institute Policlinico San Matteo, Pavia, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-07 | DOI: https://doi.org/10.1515/cclm-2015-0879


The serum free light chain (FLC) assay has proven to be an important complementary test in the management of patients with monoclonal gammopathies. The serum FLC assay has value for patients with plasma cell disorders in the context of screening and diagnosis, prognostic stratification, and quantitative monitoring. Nonetheless, serum FLC measurements have analytical limitations which give rise to differences in FLC reporting depending on which FLC assay and analytical platform is used. As the FLC measurements are incorporated in the International Myeloma Working Group guidelines for the evaluation and management of plasma cell dyscrasias, this may directly affect clinical decisions. As new certified methods for serum FLC assays emerge, the need to harmonise patient FLC results becomes increasingly important. In this opinion paper we provide an overview of the current lack of accuracy and harmonisation in serum FLC measurements. The clinical consequence of non-harmonized FLC measurements is that an individual patient may or may not meet certain diagnostic, prognostic, or response criteria, depending on which FLC assay and platform is used. We further discuss whether standardisation of serum FLC measurements is feasible and provide an overview of the steps needed to be taken towards harmonisation of FLC measurements.

Keywords: free light chains; harmonisation; monoclonal gammopathy; M-protein; plasma cell dyscrasia; standardisation


  • 1.

    Dimopoulos M, Kyle R, Fermand JP, Rajkumar SV, San Miguel J, Chanan-Khan A, et al. Consensus recommendations for standard investigative workup: report of the International Myeloma Workshop Consensus Panel 3. Blood 2011;117:4701–5.Google Scholar

  • 2.

    Kyle RA, Durie BG, Rajkumar SV, Landgren O, Blade J, Merlini G, et al. Monoclonal gammopathy of undetermined significance (MGUS) and smoldering (asymptomatic) multiple myeloma: IMWG consensus perspectives risk factors for progression and guidelines for monitoring and management. Leukemia 2010;24:1121–7.Google Scholar

  • 3.

    Bradwell AR, Carr-Smith HD, Mead GP, Tang LX, Showell PJ, Drayson MT, et al. Highly sensitive, automated immunoassay for immunoglobulin free light chains in serum and urine. Clin Chem 2001;47:673–80.Google Scholar

  • 4.

    Dispenzieri A, Katzmann JA, Kyle RA, Larson DR, Therneau TM, Colby CL, et al. Use of nonclonal serum immunoglobulin free light chains to predict overall survival in the general population. Mayo Clin Proc 2012;87:517–23.Google Scholar

  • 5.

    Graziani MS, Merlini G. Serum free light chain analysis in the diagnosis and management of multiple myeloma and related conditions. ExpertRev Mol Diagn 2014;14:55–66.Google Scholar

  • 6.

    Tate J, Bazeley S, Sykes S, Mollee P. Quantitative serum free light chain assay – analytical issues. Clin Biochem Rev 2009;30:131–40.Google Scholar

  • 7.

    Campbell JP, Cobbold M, Wang Y, Goodall M, Bonney SL, Chamba A, et al. Development of a highly-sensitive multi-plex assay using monoclonal antibodies for the simultaneous measurement of kappa and lambda immunoglobulin free light chains in serum and urine. J Immunol Methods 2013;391:1–13.Google Scholar

  • 8.

    Davern S, Tang LX, Williams TK, Macy SD, Wall JS, Weiss DT, et al. Immunodiagnostic capabilities of anti-free immunoglobulin light chain monoclonal antibodies. Am J Clin Pathol 2008;130:702–11.Google Scholar

  • 9.

    de Kat Angelino CM, Raymakers R, Teunesen MA, Jacobs JF, Klasen IS. Overestimation of serum kappa free light chain concentration by immunonephelometry. Clin Chem 2010;56:1188–90.Google Scholar

  • 10.

    Nakano T, Nagata A. ELISAs for free human immunoglobulin light chains in serum: improvement of assay specificity by using two specific antibodies in a sandwich detection method. J Immunol Methods 2004;293:183–9.Google Scholar

  • 11.

    te Velthuis H, Knop I, Stam P, van den Broek M, Bos HK, Hol S, et al. N Latex FLC-new monoclonal high-performance assays for the determination of free light chain kappa and lambda. Clin Chem Lab Med 2011;49:1323–32.Google Scholar

  • 12.

    Dispenzieri A, Kyle R, Merlini G, Miguel JS, Ludwig H, Hajek R, et al. International Myeloma Working Group guidelines for serum-free light chain analysis in multiple myeloma and related disorders. Leukemia 2009;23:215–24.Google Scholar

  • 13.

    Abraham RS, Charlesworth MC, Owen BA, Benson LM, Katzmann JA, Reeder CB, et al. Trimolecular complexes of lambda light chain dimers in serum of a patient with multiple myeloma. Clin Chem 2002;48:1805–11.Google Scholar

  • 14.

    Bosmann M, Kossler J, Stolz H, Walter U, Knop S, Steigerwald U. Detection of serum free light chains: the problem with antigen excess. Clin Chem Lab Med 2010;48:1419–22.Google Scholar

  • 15.

    Jacobs JF, Hoedemakers RM, Teunissen E, Te Velthuis H. N Latex FLC serum free light-chain assays in patients with renal impairment. Clin Chem Lab Med 2014;52:853–9.Google Scholar

  • 16.

    Jacobs JF, Hoedemakers RM, Teunissen E, van der Molen RG, Te Velthuis H. Effect of sample dilution on two free light chain nephelometric assays. Clin Chim Acta 2012;413;1708–9.Google Scholar

  • 17.

    Tate J, Mollee P, Johnson R. Monoclonal gammopathies – clinical and laboratory issues. Clin Biochem Rev 2009;30:89–91.Google Scholar

  • 18.

    Tate JR, Mollee P, Dimeski G, Carter AC, Gill D. Analytical performance of serum free light-chain assay during monitoring of patients with monoclonal light-chain diseases. Clin Chim Acta 2007;376:30–6.Google Scholar

  • 19.

    Vercammen M, Meirlaen P, Broodtaerts L, Vande BI, Bossuyt X. Effect of sample dilution on serum free light chain concentration by immunonephelometric assay. Clin Chim Acta 2011;412: 1798–804.Google Scholar

  • 20.

    Murata K, Clark RJ, Lockington KS, Tostrud LJ, Greipp PR, Katzmann JA. Sharply increased serum free light-chain concentrations after treatment for multiple myeloma. Clin Chem 2010;56:16–8.Google Scholar

  • 21.

    Murng SH, Follows L, Whitfield P, Snowden JA, Swallow K, Green K, et al. Defining the impact of individual sample variability on routine immunoassay of serum free light chains (sFLC) in multiple myeloma. Clin Exp Immunol 2013;171:201–9.Google Scholar

  • 22.

    Pattenden RJ, Rogers SY, Wenham PR. Serum free light chains; the need to establish local reference intervals. Ann Clin Biochem 2007;44:512–5.Google Scholar

  • 23.

    Hoedemakers RM, Pruijt JF, Hol S, Teunissen E, Martens H, Stam P, et al. Clinical comparison of new monoclonal antibody-based nephelometric assays for free light chain kappa and lambda to polyclonal antibody-based assays and immunofixation electrophoresis. Clin Chem Lab Med 2011;50:489–95.Google Scholar

  • 24.

    Lock RJ, Saleem R, Roberts EG, Wallage MJ, Pesce TJ, Rowbottom A, et al. A multicentre study comparing two methods for serum free light chain analysis. Ann Clin Biochem 2013;50:255–61.Google Scholar

  • 25.

    Mollee P, Tate J, Pretorius CJ. Evaluation of the N Latex free light chain assay in the diagnosis and monitoring of AL amyloidosis. Clin Chem Lab Med 2013;51:2303–10.Google Scholar

  • 26.

    Pretorius CJ, Klingberg S, Tate J, Wilgen U, Ungerer JP. Evaluation of the N Latex FLC free light chain assay on the Siemens BN analyser: precision, agreement, linearity and variation between reagent lots. Ann Clin Biochem 2012;49:450–5.Google Scholar

  • 27.

    Schneider N, Wynckel A, Kolb B, Sablon E, Gillery P, Maquart FX. [Comparative analysis of immunoglobulin free light chains quantification by Freelite (The Binding Site) and N Latex FLC (Siemens) methods]. Ann Biol Clin (Paris) 2013;71:13–9.Google Scholar

  • 28.

    Kim HS, Kim HS, Shin KS, Song W, Kim HJ, Kim HS, et al. Clinical comparisons of two free light chain assays to immunofixation electrophoresis for detecting monoclonal gammopathy. BioMed Res Int 2014;2014:647238.Google Scholar

  • 29.

    International Myeloma Working Group. Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br J Haematol 2003;121:749–57.Google Scholar

  • 30.

    Kyle RA, Rajkumar SV. Criteria for diagnosis, staging, risk stratification and response assessment of multiple myeloma. Leukemia 2009;23:3–9.Google Scholar

  • 31.

    Dispenzieri A, Kyle RA, Katzmann JA, Therneau TM, Larson D, Benson J, et al. Immunoglobulin free light chain ratio is an independent risk factor for progression of smoldering (asymptomatic) multiple myeloma. Blood 2008;111:785–9.Google Scholar

  • 32.

    Kastritis E, Terpos E, Moulopoulos L, Spyropoulou-Vlachou M, Kanellias N, Eleftherakis-Papaiakovou E, et al. Extensive bone marrow infiltration and abnormal free light chain ratio identifies patients with asymptomatic myeloma at high risk for progression to symptomatic disease. Leukemia 2013;27:947–53.Google Scholar

  • 33.

    Larsen JT, Kumar SK, Dispenzieri A, Kyle RA, Katzmann JA, Rajkumar SV. Serum free light chain ratio as a biomarker for high-risk smoldering multiple myeloma. Leukemia 2013;27: 941–6.Google Scholar

  • 34.

    Waxman AJ, Mick R, Garfall AL, Cohen A, Vogl DT, Stadtmauer EA, et al. Classifying ultra-high risk smoldering myeloma. Leukemia 2015;29:751–3.Google Scholar

  • 35.

    Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, Mateos MV, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol 2014;15:e538–48.Google Scholar

  • 36.

    Wang L, Chan PC. Measurement uncertainty for serum free light chain assays: estimation and implication on result interpretation. Clinical Biochem 2013;46:381–4.Google Scholar

  • 37.

    Hutchison CA, Batuman V, Behrens J, Bridoux F, Sirac C, Dispenzieri A, et al. The pathogenesis and diagnosis of acute kidney injury in multiple myeloma. Nat Rev Nephrol 2012;8: 43–51.Google Scholar

  • 38.

    Hutchison CA, Cockwell P, Cook M. Diagnostic accuracy of monoclonal antibody based serum immunoglobulin free light chain immunoassays in myeloma cast nephropathy. BMC Clin Pathol 2012;12:12.Google Scholar

  • 39.

    Durie BG, Harousseau JL, Miguel JS, Blade J, Barlogie B, Anderson K, et al. International uniform response criteria for multiple myeloma. Leukemia 2006;20:1467–73.Google Scholar

  • 40.

    Snozek CL, Katzmann JA, Kyle RA, Dispenzieri A, Larson DR, Therneau TM, et al. Prognostic value of the serum free light chain ratio in newly diagnosed myeloma: proposed incorporation into the international staging system. Leukemia 2008;22:1933–7.Google Scholar

  • 41.

    Kyrtsonis MC, Vassilakopoulos TP, Kafasi N, Sachanas S, Tzenou T, Papadogiannis A, et al. Prognostic value of serum free light chain ratio at diagnosis in multiple myeloma. Br J Haematol 2007;137:240–3.Google Scholar

  • 42.

    van Rhee F, Bolejack V, Hollmig K, Pineda-Roman M, Anaissie E, Epstein J, et al. High serum-free light chain levels and their rapid reduction in response to therapy define an aggressive multiple myeloma subtype with poor prognosis. Blood 2007;110:827–32.Google Scholar

  • 43.

    Munshi NC, Anderson KC, Bergsagel PL, Shaughnessy J, Palumbo A, Durie B, et al. Consensus recommendations for risk stratification in multiple myeloma: report of the International Myeloma Workshop Consensus Panel 2. Blood 2011;117: 4696–700.Google Scholar

  • 44.

    Jovanovich S, Tate J, Wheatland L, Mollee P, Jacobs JF. Report of 2013 RCPA serum free light chains (SFLC) quality assurance program (QAP) – a need for harmonisation [Abstract]. Clin Biochem Rev 2014;35:S46.Google Scholar

  • 45.

    Van Duijn MM, Jacobs JF, Wevers RA, Engelke UF, Joosten I, Luider TM. Quantitative measurement of immunoglobulins and free light chains using mass spectrometry. Anal Chem 2015;87:8268–74.Google Scholar

  • 46.

    Mills JR, Barnidge DR, Murray DL. Detecting monoclonal immunoglobulins in human serum using mass spectrometry. Methods 2015;81:56–65.Google Scholar

  • 47.

    International Vocabulary of Metrology – Basic and General Concepts and Associated Terms (VIM 3rd ed.). JCGM, 2012(200).Google Scholar

  • 48.

    Panteghini M. Traceability, reference systems and result comparability. Clin Biochem Rev 2007;28:97–104.Google Scholar

  • 49.

    Schimmel H, Zegers I. Performance criteria for reference measurement procedures and reference materials. Clin Chem Lab Med 2015;53:899–904.Google Scholar

  • 50.

    Campbell JP, Stride AE, Brioli A, Coodall M, Morgen CJ, Drayson MT. Seralite rapid point-of-care detection of free light chain escape, non-secretory relapse and light chain only relapse in multiple myeloma [Abstract]. Blood 2013;122:3136.Google Scholar

  • 51.

    Nakano T, Miyazaki S, Takahashi H, Matsumori A, Maruyama T, Komoda T, et al. Immunochemical quantification of free immunoglobulin light chains from an analytical perspective. Clin Chem Lab Med 2006;44:522–32.Google Scholar

  • 52.

    Solomon A, Weiss DT. Structural and functional properties of human lambda-light-chain variable-region subgroups. Clin Diagn Lab Immunol 1995;2:387–94.Google Scholar

  • 53.

    Lavatelli F, Brambilla F, Valentini V, Rognoni P, Casarini S, Di Silvestre D, et al. A novel approach for the purification and proteomic analysis of pathogenic immunoglobulin free light chains from serum. Biochim Biophys Acta 2011;1814:409–19.Google Scholar

  • 54.

    Graziani M, Merlini G, Petrini C, Proteins ICoP, Proteins SISGo. Guidelines for the analysis of Bence Jones protein. Clin Chem Lab Med 2003;41:338–46.Google Scholar

  • 55.

    Mead GP, Carr-Smith HD, Drew R, Drayson MT, Bradwell AR. Nephelometric measurement of serum free light chains in nonsecretory myeloma [Abstract]. Clin Chem 2002;48:A23.Google Scholar

  • 56.

    Harding S, Provot F, Beuscart JB, Cook M, Bradwell AR, Stringer S, et al. Aggregated serum free light chains may prevent adequate removal by high cut-off haemodialysis. Nephrol Dial Transplant 2011;26:1438.Google Scholar

  • 57.

    Kaplan B, Golderman S, Aizenbud B, Esev K, Kukuy O, Leiba M, et al. Immunoglobulin-free light chain monomer-dimer patterns help to distinguish malignant from premalignant monoclonal gammopathies: a pilot study. Am J Hematol 2014;89:882–8.Google Scholar

  • 58.

    Di Noto G, Cimpoies E, Dossi A, Paolini L, Radeghieri A, Caimi L, et al. Polyclonal versus monoclonal immunoglobulin-free light chains quantification. Ann Clin Biochem 2015;52:327–36.Google Scholar

  • 59.

    Palladini G, Russo P, Bosoni T, Verga L, Sarais G, Lavatelli F, et al. Identification of amyloidogenic light chains requires the combination of serum-free light chain assay with immunofixation of serum and urine. Clin Chem 2009;55:499–504.Google Scholar

  • 60.

    Jacobs JF, de Kat Angelino CM, Raymakers R, Klasen IS. To the editor: Author reply. Clin Chem 2010;56:1504.Google Scholar

  • 61.

    Mead GP, Carr-Smith HD. Overestimation of serum kappa free light chain concentration by immunonephelometry. Clin Chem 2010;56:1503–4.Google Scholar

  • 62.

    Murray DL, Ryu E, Snyder MR, Katzmann JA. Quantitation of serum monoclonal proteins: relationship between agarose gel electrophoresis and immunonephelometry. Clin Chem 2009;55:1523–9.Google Scholar

  • 63.

    Tillyer CR. The estimation of free light chains of immunoglobulins in biological fluids. Int J Clin Lab Res 1992;22:152–8.Google Scholar

About the article

Corresponding author: Joannes F.M. Jacobs, PhD, MD, Radboud University Medical Center, Department of Laboratory Medicine, Laboratory Medical Immunology, Geert Grooteplein 10 (route 469), 6525 GA Nijmegen, The Netherlands, Phone: +31 (0)24-3617414, Fax: +31 (0)24-3619415

Received: 2015-09-10

Accepted: 2015-11-06

Published Online: 2015-12-07

Published in Print: 2016-06-01

Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), Volume 54, Issue 6, Pages 1021–1030, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/cclm-2015-0879.

Export Citation

©2016 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Vernon Wu, Erin Moshier, Siyang Leng, Bart Barlogie, Hearn Jay Cho, Sundar Jagannath, Deepu Madduri, Madhu Mazumdar, Samir Parekh, and Ajai Chari
Blood Advances, 2018, Volume 2, Number 12, Page 1470
Umberto Basile, Francesca Gulli, Laura Gragnani, Cecilia Napodano, Krizia Pocino, Gian Ludovico Rapaccini, Michele Mussap, and Anna Linda Zignego
Journal of Immunological Methods, 2017
Joannes F.M. Jacobs, Corrie M. de Kat Angelino, Huberdina M.L.M. Brouwers, Sandra A. Croockewit, Irma Joosten, and Renate G. van der Molen
Clinical Chemistry and Laboratory Medicine (CCLM), 2017, Volume 0, Number 0
Rocco Sabatino, Antonio Perrone, Marco Cuomo, Sandra Liotti, Vittoria Barchiesi, Monica Cantile, and Ernesta Cavalcanti
International Journal of Molecular Sciences, 2017, Volume 18, Number 4, Page 804
Giovanni Cigliana, Francesca Gulli, Cecilia Napodano, Krizia Pocino, Elena De Santis, Luigi Colacicco, Iole Cordone, Laura Conti, and Umberto Basile
Journal of Clinical Laboratory Analysis, 2017, Page e22243
Matteo Gastaldi, Elisabetta Zardini, and Diego Franciotta
Expert Review of Molecular Diagnostics, 2017, Volume 17, Number 1, Page 31

Comments (0)

Please log in or register to comment.
Log in