Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter / Tate, Jillian R.

12 Issues per year

IMPACT FACTOR 2016: 3.432

CiteScore 2016: 2.21

SCImago Journal Rank (SJR) 2016: 1.000
Source Normalized Impact per Paper (SNIP) 2016: 1.112

See all formats and pricing
More options …
Volume 54, Issue 7


A fast and simple method for detecting and quantifying donor-derived cell-free DNA in sera of solid organ transplant recipients as a biomarker for graft function

Martina Adamek
  • Institute of Immunology, Transplantation Immunology, University of Heidelberg, Heidelberg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gerhard Opelz
  • Institute of Immunology, Transplantation Immunology, University of Heidelberg, Heidelberg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Katrin Klein / Christian Morath / Thuong Hien Tran
  • Corresponding author
  • Institute of Immunology, Transplantation Immunology, University of Heidelberg, Heidelberg, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-11-17 | DOI: https://doi.org/10.1515/cclm-2015-0622


Background: Timely detection of graft rejection is an important issue in the follow-up care after solid organ transplantation. Until now, biopsy has been considered the “gold standard” in the diagnosis of graft rejection. However, non-invasive tests such as monitoring the levels of cell-free DNA (cfDNA) as a sensitive biomarker for graft integrity have attracted increasing interest. The rationale of this approach is that a rejected organ will lead to a significant release of donor-derived cfDNA, which can be detected in the serum of the transplant recipient.

Methods: We have developed a novel quantitative real-time PCR (qPCR) approach for detecting an increase of donor-derived cfDNA in the recipient’s serum. Common insertion/deletion (InDel) genetic polymorphisms, which differ between donor and recipient, are targeted in our qPCR assay. In contrast to some other strategies, no specific donor/recipient constellations such as certain gender combinations or human leukocyte antigen (HLA) discrepancies are required for the application of our test.

Results: The method was first validated with serial dilutions of serum mixtures obtained from healthy blood donors and then used to determine donor-derived cfDNA levels in patients’ sera within the first 3 days after their kidney transplantation had been performed.

Conclusions: Our method represents a universally applicable, simple and cost-effective tool which can potentially be used to detect graft dysfunction in transplant recipients.

This article offers supplementary material which is provided at the end of the article.

Keywords: biomarker; cell-free DNA; graft rejection; InDel; kidney transplantation; qPCR


  • 1.

    Pascual J, Perez-Saez MJ, Mir M, Crespo M. Chronic renal allograft injury: early detection, accurate diagnosis and management. Transplant Rev 2012;26:280–90.Google Scholar

  • 2.

    Wagner J. Free DNA–new potential analyte in clinical laboratory diagnostics? Biochem Med 2012;22:24–38.Google Scholar

  • 3.

    Lo YM, Tein MS, Pang CC, Yeung CK, Tong KL, Hjelm NM. Presence of donor-specific DNA in plasma of kidney and liver-transplant recipients. Lancet 1998;351:1329–30.Google Scholar

  • 4.

    Araujo MB, Leonardi LS, Boin IF, Leonardi MI, Magna LA, Donadi EA, et al. Development of donor-specific microchimerism in liver transplant recipient with HLA-DRB1 and -DQB1 mismatch related to rejection episodes. Transplant P 2004;36:953–5.Google Scholar

  • 5.

    Araujo MB, Leonardi LS, Boin IF, Leonardi MI, Meirelles L, Magna LA, et al. Molecular mechanisms associated with donor-specific microchimerism in peripheral blood of Brazilian patients after liver transplantation. Transplant P 2006;38:1411–7.Google Scholar

  • 6.

    Crespo-Leiro MG, Hermida-Prieto M, Rodriguez JA, Muniz J, Barral S, Paniagua MJ, et al. Microchimerism after heart transplantation: prevalence, predisposing factors, natural history, and prognosis. Transplant P 2002;34:161–3.Google Scholar

  • 7.

    Fu YW, Wang WG, Zhou HL, Cai L. Presence of donor-and-recipient-derived DNA microchimerism in the cell-free blood samples of renal transplantation recipients associates with the acceptance of transplanted kidneys. Asian J Androl 2006;8:477–82.Google Scholar

  • 8.

    Araujo MB, Leonardi LS, Leonardi MI, Boin IF, Magna LA, Donadi EA, et al. Prospective analysis between the therapy of immunosuppressive medication and allogeneic microchimerism after liver transplantation. Transpl Immunol 2009;20:195–8.Web of ScienceGoogle Scholar

  • 9.

    Ayala R, Grande S, Albizua E, Crooke A, Meneu JC, Moreno A, et al. Long-term follow-up of donor chimerism and tolerance after human liver transplantation. Liver Transpl 2009;15:581–91.Google Scholar

  • 10.

    Gadi VK, Nelson JL, Boespflug ND, Guthrie KA, Kuhr CS. Soluble donor DNA concentrations in recipient serum correlate with pancreas-kidney rejection. Clin Chem 2006;52:379–82.Google Scholar

  • 11.

    Garcia Moreira V, Prieto Garcia B, Baltar Martin JM, Ortega Suarez F, Alvarez FV. Cell-free DNA as a noninvasive acute rejection marker in renal transplantation. Clin Chem 2009;55:1958–66.Google Scholar

  • 12.

    Lui YY, Woo KS, Wang AY, Yeung CK, Li PK, Chau E, et al. Origin of plasma cell-free DNA after solid organ transplantation. Clin Chem 2003;49:495–6.Google Scholar

  • 13.

    Macher HC, Suarez-Artacho G, Guerrero JM, Gomez-Bravo MA, Alvarez-Gomez S, Bernal-Bellido C, et al. Monitoring of transplanted liver health by quantification of organ-specific genomic marker in circulating DNA from receptor. PloS One 2014;9:e113987.Google Scholar

  • 14.

    Rutkowska J, Interewiczi B, Rydzewski A, Swietek M, Dominiak A, Durlik M, et al. Donor DNA is detected in recipient blood for years after kidney transplantation using sensitive forensic medicine methods. Ann Transplant 2007;12:12–4.Google Scholar

  • 15.

    De Vlaminck I, Valantine HA, Snyder TM, Strehl C, Cohen G, Luikart H, et al. Circulating cell-free DNA enables noninvasive diagnosis of heart transplant rejection. Sci Transl Med 2014;6:241ra77.Web of ScienceGoogle Scholar

  • 16.

    Snyder TM, Khush KK, Valantine HA, Quake SR. Universal noninvasive detection of solid organ transplant rejection. Proc Natl Acad Sci USA 2011;108:6229–34.Google Scholar

  • 17.

    Beck J, Bierau S, Balzer S, Andag R, Kanzow P, Schmitz J, et al. Digital droplet PCR for rapid quantification of donor DNA in the circulation of transplant recipients as a potential universal biomarker of graft injury. Clin Chem 2013;59:1732–41.Web of ScienceGoogle Scholar

  • 18.

    Kanzow P, Kollmar O, Schutz E, Oellerich M, Schmitz J, Beck J, et al. Graft-derived cell-free DNA as an early organ integrity biomarker after transplantation of a marginal HELLP syndrome donor liver. Transplantation 2014;98:e43–5.Web of ScienceGoogle Scholar

  • 19.

    Oellerich M, Schutz E, Kanzow P, Schmitz J, Beck J, Kollmar O, et al. Use of graft-derived cell-free DNA as an organ integrity biomarker to reexamine effective tacrolimus trough concentrations after liver transplantation. Ther Drug Monit 2014;36:136–40.Web of ScienceGoogle Scholar

  • 20.

    Hinds DA, Kloek AP, Jen M, Chen X, Frazer KA. Common deletions and SNPs are in linkage disequilibrium in the human genome. Nat Genet 2006;38:82–5.Google Scholar

  • 21.

    Sigdel TK, Vitalone MJ, Tran TQ, Dai H, Hsieh SC, Salvatierra O, et al. A rapid noninvasive assay for the detection of renal transplant injury. Transplantation 2013;96:97–101.Web of ScienceGoogle Scholar

  • 22.

    Garcia Moreira V, de la Cera Martinez T, Gago Gonzalez E, Prieto Garcia B, Alvarez Menendez FV. Increase in and clearance of cell-free plasma DNA in hemodialysis quantified by real-time PCR. Clin Chem Lab Med 2006;44:1410–5.Google Scholar

  • 23.

    Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nuc Acids Res 1988;16:1215.Google Scholar

  • 24.

    Zheng YW, Chan KC, Sun H, Jiang P, Su X, Chen EZ, et al. Nonhematopoietically derived DNA is shorter than hematopoietically derived DNA in plasma: a transplantation model. Clin Chem 2012;58:549–58.Web of ScienceGoogle Scholar

  • 25.

    Lion T, Watzinger F, Preuner S, Kreyenberg H, Tilanus M, de Weger R, et al. The EuroChimerism concept for a standardized approach to chimerism analysis after allogeneic stem cell transplantation. Leukemia 2012;26:1821–8.Web of ScienceGoogle Scholar

  • 26.

    Alizadeh M, Bernard M, Danic B, Dauriac C, Birebent B, Lapart C, et al. Quantitative assessment of hematopoietic chimerism after bone marrow transplantation by real-time quantitative polymerase chain reaction. Blood 2002;99:4618–25.Google Scholar

  • 27.

    Willasch A, Schneider G, Reincke BS, Shayegi N, Kreyenberg H, Kuci S, et al. Sequence polymorphism systems for quantitative real-time polymerase chain reaction to characterize hematopoietic chimerism-high informativity and sensitivity as well as excellent reproducibility and precision of measurement. Lab Hematol 2007;13:73–84.Google Scholar

  • 28.

    Burns M, Valdivia H. Modelling the limit of detection in real-time quantitative PCR. Eur Food Res Technol 2008;226:1513–24.Web of ScienceGoogle Scholar

  • 29.

    Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009;55:611–22.Web of ScienceGoogle Scholar

  • 30.

    Bruno DL, Ganesamoorthy D, Thorne NP, Ling L, Bahlo M, Forrest S, et al. Use of copy number deletion polymorphisms to assess DNA chimerism. Clin Chem 2014;60:1105–14.Google Scholar

  • 31.

    Li Y, Hahn D, Zhong XY, Thomson PD, Holzgreve W, Hahn S. Detection of donor-specific DNA polymorphisms in the urine of renal transplant recipients. Clin Chem 2003;49:655–8.Google Scholar

About the article

Corresponding author: Thuong Hien Tran, MD, Transplantation Immunology, Institute of Immunology, University of Heidelberg, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany, E-mail:

Received: 2015-07-01

Accepted: 2015-10-17

Published Online: 2015-11-17

Published in Print: 2016-07-01

Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), Volume 54, Issue 7, Pages 1147–1155, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/cclm-2015-0622.

Export Citation

©2016 by De Gruyter. Copyright Clearance Center

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Jesus Duque-Afonso, Miguel Waterhouse, Dietmar Pfeifer, Marie Follo, Justus Duyster, Hartmut Bertz, and Jürgen Finke
Clinical Biochemistry, 2017
Paul M. K. Gordon, Aneal Khan, Umair Sajid, Nicholas Chang, Varun Suresh, Leo Dimnik, Ryan E. Lamont, Jillian S. Parboosingh, Steven R. Martin, Richard T. Pon, Jene Weatherhead, Shelly Wegener, Debra Isaac, and Steven C. Greenway
Frontiers in Cardiovascular Medicine, 2016, Volume 3
Mahmoud Aljurf, Hala Abalkhail, Amal Alseraihy, Said Y. Mohamed, Mouhab Ayas, Fahad Alsharif, Hazza Alzahrani, Abdullah Al-Jefri, Ghuzayel Aldawsari, Ali Al-Ahmari, Asim F. Belgaumi, Claudia Ulrike Walter, Hassan El-Solh, Walid Rasheed, and Maher Albitar
Biotechnology Research International, 2016, Volume 2016, Page 1

Comments (0)

Please log in or register to comment.
Log in