Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Greaves, Ronda / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter


IMPACT FACTOR 2018: 3.638

CiteScore 2018: 2.44

SCImago Journal Rank (SJR) 2018: 1.191
Source Normalized Impact per Paper (SNIP) 2018: 1.205

Online
ISSN
1437-4331
See all formats and pricing
More options …
Volume 55, Issue 2

Issues

Intra-individual variation of plasma trimethylamine-N-oxide (TMAO), betaine and choline over 1 year

Tilman Kühn
  • Corresponding author
  • Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany, Phone: +49 6221 42 3184, Fax: +49 6221 42 2203
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sabine Rohrmann
  • Division of Chronic Disease Epidemiology, Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Disorn Sookthai / Theron Johnson / Verena Katzke / Rudolf Kaaks / Arnold von Eckardstein / Daniel Müller
Published Online: 2016-07-22 | DOI: https://doi.org/10.1515/cclm-2016-0374

Abstract

Background:

Circulating trimethylamine-N-oxide (TMAO) has been implicated in the development of cardiovascular and chronic kidney diseases (CKD). However, while higher TMAO levels have been associated with increased risks of cardiovascular or renal events in first prospective studies, it remained unclear how much plasma TMAO concentrations vary over time.

Methods:

We measured fasting plasma levels of TMAO and two of its precursors, betaine and choline by LC-MS, in two samples of 100 participants of the European Investigation into Cancer and Nutrition (EPIC)-Heidelberg study (age range: 47–80 years, 50% female) that were collected 1 year apart, and assessed their intra-individual variation by Spearman’s correlation coefficients (ρ).

Results:

Correlations of metabolite concentrations over 1 year were at ρ=0.29 (p=0.003) for TMAO, ρ=0.81 (p<0.001) for betaine, and ρ=0.61 (p<0.001) for choline. Plasma levels of TMAO were not significantly associated with food intake, lifestyle factors, or routine biochemistry parameters such as C-reactive protein (CRP), low-density lipoprotein (LDL)-cholesterol, or creatinine.

Conclusions:

In contrast to fasting plasma concentrations of betaine and choline, concentrations of TMAO were more strongly affected by intra-individual variation over 1 year in adults from the general population. The modest correlation of TMAO levels over time should be considered when interpreting associations between TMAO levels and disease endpoints.

This article offers supplementary material which is provided at the end of the article.

Keywords: betaine; choline; intra-individual variation; TMAO

References

  • 1.

    Fogelman AM. TMAO is both a biomarker and a renal toxin. Circ Res 2015;116:396–7.Google Scholar

  • 2.

    Lim GB. Risk factors: intestinal microbiota: “a new direction in cardiovascular research”. Nat Rev Cardiol 2013;10:363.Google Scholar

  • 3.

    Vinje S, Stroes E, Nieuwdorp M, Hazen SL. The gut microbiome as novel cardio-metabolic target: the time has come! Eur Heart J 2014;35:883–7.Google Scholar

  • 4.

    Org E, Mehrabian M, Lusis AJ. Unraveling the environmental and genetic interactions in atherosclerosis: central role of the gut microbiota. Atherosclerosis 2015;241:387–99.Google Scholar

  • 5.

    Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011;472:57–63.Google Scholar

  • 6.

    Wang Z, Tang WH, Buffa JA, Fu X, Britt EB, Koeth RA, et al. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J 2014;35:904–10.Google Scholar

  • 7.

    Tang WH, Wang Z, Shrestha K, Borowski AG, Wu Y, Troughton RW, et al. Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure. J Card Fail 2015;21:91–6.Google Scholar

  • 8.

    Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 2013;368:1575–84.Google Scholar

  • 9.

    Haissman JM, Knudsen A, Hoel H, Kjaer A, Kristoffersen US, Berge RK, et al. Microbiota-dependent marker TMAO is elevated in silent ischemia but is not associated with first-time myocardial infarction in HIV infection. J Acquir Immune Defic Syndr 2016;71:130–6.Google Scholar

  • 10.

    Mueller DM, Allenspach M, Othman A, Saely CH, Muendlein A, Vonbank A, et al. Plasma levels of trimethylamine-N-oxide are confounded by impaired kidney function and poor metabolic control. Atherosclerosis 2015;243:638–44.Google Scholar

  • 11.

    Ufnal M, Zadlo A, Ostaszewski R. TMAO: a small molecule of great expectations. Nutrition 2015;31:1317–23.Google Scholar

  • 12.

    Tang WH, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B, et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res 2015;116:448–55.Google Scholar

  • 13.

    Rhee EP, Clish CB, Ghorbani A, Larson MG, Elmariah S, McCabe E, et al. A combined epidemiologic and metabolomic approach improves CKD prediction. J Am Soc Nephrol 2013;24:1330–8.Google Scholar

  • 14.

    Mafune A, Iwamoto T, Tsutsumi Y, Nakashima A, Yamamoto I, Yokoyama K, et al. Associations among serum trimethylamine-N-oxide (TMAO) levels, kidney function and infarcted coronary artery number in patients undergoing cardiovascular surgery: a cross-sectional study. Clin Exp Nephrol 2015;[Epub ahead of print].Google Scholar

  • 15.

    Stubbs JR, House JA, Ocque AJ, Zhang S, Johnson C, Kimber C, et al. Serum trimethylamine-N-oxide is elevated in CKD and correlates with coronary atherosclerosis burden. J Am Soc Nephrol 2016;27:305–13.Google Scholar

  • 16.

    Bae S, Ulrich CM, Neuhouser ML, Malysheva O, Bailey LB, Xiao L, et al. Plasma choline metabolites and colorectal cancer risk in the Women’s Health Initiative Observational Study. Cancer Res 2014;74:7442–52.Google Scholar

  • 17.

    Mondul AM, Moore SC, Weinstein SJ, Karoly ED, Sampson JN, Albanes D. Metabolomic analysis of prostate cancer risk in a prospective cohort: the alpha-tocolpherol, beta-carotene cancer prevention (ATBC) study. Int J Cancer 2015;137:2124–32.Google Scholar

  • 18.

    Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 2013;19:576–85.Google Scholar

  • 19.

    Moraes C, Fouque D, Amaral AC, Mafra D. Trimethylamine N-oxide from gut microbiota in chronic kidney disease patients: focus on diet. J Ren Nutr 2015;25:459–65.Google Scholar

  • 20.

    Hartiala J, Bennett BJ, Tang WH, Wang Z, Stewart AF, Roberts R, et al. Comparative genome-wide association studies in mice and humans for trimethylamine N-oxide, a proatherogenic metabolite of choline and L-carnitine. Arterioscler Thromb Vasc Biol 2014;34:1307–13.Google Scholar

  • 21.

    Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature 2012;486:222–7.Google Scholar

  • 22.

    Nagel G, Zoller D, Ruf T, Rohrmann S, Linseisen J. Long-term reproducibility of a food-frequency questionnaire and dietary changes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Heidelberg cohort. Br J Nutr 2007;98:194–200.Google Scholar

  • 23.

    McEntyre CJ, Lever M, Chambers ST, George PM, Slow S, Elmslie JL, et al. Variation of betaine, N,N-dimethylglycine, choline, glycerophosphorylcholine, taurine and trimethylamine-N-oxide in the plasma and urine of overweight people with type 2 diabetes over a two-year period. Ann Clin Biochem 2015;52:352–60.Google Scholar

  • 24.

    Riboli E, Hunt K, Slimani N, Ferrari P, Norat T, Fahey M, et al. European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Publ Health Nutr 2002;5:1113–24.Google Scholar

  • 25.

    Boeing H, Wahrendorf J, Becker N. EPIC-Germany–a source for studies into diet and risk of chronic diseases. European Investigation into Cancer and Nutrition. Ann Nutr Metab 1999;43:195–204.Google Scholar

  • 26.

    Neamat-Allah J, Wald D, Husing A, Teucher B, Wendt A, Delorme S, et al. Validation of anthropometric indices of adiposity against whole-body magnetic resonance imaging–a study within the German European Prospective Investigation into Cancer and Nutrition (EPIC) cohorts. PLoS One 2014;9:e91586.Google Scholar

  • 27.

    Nothlings U, Hoffmann K, Bergmann MM, Boeing H. Fitting portion sizes in a self-administered food frequency questionnaire. J Nutr 2007;137:2781–6.Google Scholar

  • 28.

    Wald D, Teucher B, Dinkel J, Kaaks R, Delorme S, Boeing H, et al. Automatic quantification of subcutaneous and visceral adipose tissue from whole-body magnetic resonance images suitable for large cohort studies. J Magn Reson Imaging 2012;36:1421–34.Google Scholar

  • 29.

    Schaeffner ES, Ebert N, Delanaye P, Frei U, Gaedeke J, Jakob O, et al. Two novel equations to estimate kidney function in persons aged 70 years or older. Ann Intern Med 2012;157:471–81.Google Scholar

  • 30.

    Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009;150:604–12.Google Scholar

  • 31.

    Midttun O, Townsend MK, Nygard O, Tworoger SS, Brennan P, Johansson M, et al. Most blood biomarkers related to vitamin status, one-carbon metabolism, and the kynurenine pathway show adequate preanalytical stability and within-person reproducibility to allow assessment of exposure or nutritional status in healthy women and cardiovascular patients. J Nutr 2014;144:784–90.Google Scholar

  • 32.

    Miller CA, Corbin KD, da Costa KA, Zhang S, Zhao X, Galanko JA, et al. Effect of egg ingestion on trimethylamine-N-oxide production in humans: a randomized, controlled, dose-response study. Am J Clin Nutr 2014;100:778–86.Google Scholar

  • 33.

    Rohrmann S, Linseisen J, Allenspach M, von Eckardstein A, Muller D. Plasma concentrations of trimethylamine-N-oxide are directly associated with dairy food consumption and low-grade inflammation in a German adult population. J Nutr 2016;146:283–9.Google Scholar

  • 34.

    Fardet A. New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre? Nutr Res Rev 2010;23:65–134.Google Scholar

  • 35.

    Tuohy KM, Fava F, Viola R. ‘The way to a man’s heart is through his gut microbiota’–dietary pro- and prebiotics for the management of cardiovascular risk. Proc Nutr Soc 2014;73:172–85.Google Scholar

  • 36.

    Kaysen GA, Johansen KL, Chertow GM, Dalrymple LS, Kornak J, Grimes B, et al. Associations of trimethylamine N-oxide with nutritional and inflammatory biomarkers and cardiovascular outcomes in patients new to dialysis. J Ren Nutr 2015;25: 351–6.Google Scholar

  • 37.

    Buchman AL, Jenden D, Suki WN, Roch M. Changes in plasma free and phospholipid-bound choline concentrations in chronic hemodialysis patients. J Ren Nutr 2000;10:133–8.Google Scholar

  • 38.

    Shih DM, Wang Z, Lee R, Meng Y, Che N, Charugundla S, et al. Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis. J Lipid Res 2015;56:22–37.Google Scholar

About the article

Received: 2016-04-29

Accepted: 2016-06-23

Published Online: 2016-07-22

Published in Print: 2017-02-01


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: The EPIC-Heidelberg study was sponsored by the German Federal Ministry of Education and Research (Grant No. 01ER0809) and the German Cancer Research Center (DKFZ). The present study was further supported by the Helmholtz Association of German Research Centres (Portfolio Theme: Metabolic Dysfunction).

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.


Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), Volume 55, Issue 2, Pages 261–268, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/cclm-2016-0374.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Carmen Roncal, Esther Martínez-Aguilar, Josune Orbe, Susana Ravassa, Alejandro Fernandez-Montero, Goren Saenz-Pipaon, Ana Ugarte, Ander Estella-Hermoso de Mendoza, Jose A. Rodriguez, Sebastián Fernández-Alonso, Leopoldo Fernández-Alonso, Julen Oyarzabal, and Jose A. Paramo
Scientific Reports, 2019, Volume 9, Number 1
[2]
Eddie Hill, Hima Sapa, Lavinia Negrea, Kristin Bame, Thomas Hostetter, Hope Barkoukis, Adriana Dusso, and Mirela Dobre
Journal of Renal Nutrition, 2019
[4]
Kinga Jaworska, Dagmara Hering, Grażyna Mosieniak, Anna Bielak-Zmijewska, Marta Pilz, Michał Konwerski, Aleksandra Gasecka, Agnieszka Kapłon-Cieślicka, Krzysztof Filipiak, Ewa Sikora, Robert Hołyst, and Marcin Ufnal
Toxins, 2019, Volume 11, Number 9, Page 490
[5]
Tom van der Laan, Tim Kloots, Marian Beekman, Alida Kindt, Anne-Charlotte Dubbelman, Amy Harms, Cornelia M. van Duijn, P. Eline Slagboom, and Thomas Hankemeier
Scientific Reports, 2019, Volume 9, Number 1
[6]
Tarik Alhmoud, Anand Kumar, Chien-Chi Lo, Rana Al-Sadi, Stacey Clegg, Ihab Alomari, Tarek Zmeili, Cheryl Diane Gleasne, Kim Mcmurry, Armand Earl Ko Dichosa, Momchiloo Vuyisich, Patrick Sam Guy Chain, Shiraz Mishra, and Thomas Ma
Human Microbiome Journal, 2019, Volume 13, Page 100059
[7]
Luigi Barrea, Giovanna Muscogiuri, Giuseppe Annunziata, Daniela Laudisio, Giulia de Alteriis, Gian Carlo Tenore, Annamaria Colao, and Silvia Savastano
Nutrients, 2019, Volume 11, Number 6, Page 1310
[9]
Xuying Tan, Yan Liu, Jingan Long, Si Chen, Gongcheng Liao, Shangling Wu, Chunlei Li, Lijun Wang, Wenhua Ling, and Huilian Zhu
Molecular Nutrition & Food Research, 2019, Volume 63, Number 17, Page 1900257
[10]
Mills, Stanton, Lane, Smith, and Ross
Nutrients, 2019, Volume 11, Number 4, Page 923
[11]
Åke Nilsson and Rui-Dong Duan
American Journal of Physiology-Gastrointestinal and Liver Physiology, 2019, Volume 316, Number 4, Page G425
[12]
Danxia Yu, Xiao‐Ou Shu, Emilio S. Rivera, Xianglan Zhang, Qiuyin Cai, Marion W. Calcutt, Yong‐Bing Xiang, Honglan Li, Yu‐Tang Gao, Thomas J. Wang, and Wei Zheng
Journal of the American Heart Association, 2019, Volume 8, Number 1
[13]
Luigi Barrea, Giuseppe Annunziata, Giovanna Muscogiuri, Carolina Di Somma, Daniela Laudisio, Maria Maisto, Giulia de Alteriis, Gian Tenore, Annamaria Colao, and Silvia Savastano
Nutrients, 2018, Volume 10, Number 12, Page 1971
[14]
Tomasz Huc, Adrian Drapala, Marta Gawrys, Marek Konop, Klaudia Bielinska, Ewelina Zaorska, Emilia Samborowska, Aleksandra Wyczalkowska-Tomasik, Leszek Pączek, Michal Dadlez, and Marcin Ufnal
American Journal of Physiology-Heart and Circulatory Physiology, 2018, Volume 315, Number 6, Page H1805
[15]
Biljana Mitrova, Armel F. T. Waffo, Paul Kaufmann, Chantal Iobbi‐Nivol, Silke Leimkühler, and Ulla Wollenberger
ChemElectroChem, 2018
[16]
Martin F. Reiner, Daniel Müller, Sara Gobbato, Odile Stalder, Andreas Limacher, Nicole R. Bonetti, Lisa Pasterk, Marie Méan, Nicolas Rodondi, Drahomir Aujesky, Anne Angelillo-Scherrer, Christian M. Matter, Thomas F. Lüscher, Giovanni G. Camici, Arnold von Eckardstein, and Jürg H. Beer
Thrombosis Research, 2018
[17]
Luigi Barrea, Giuseppe Annunziata, Giovanna Muscogiuri, Daniela Laudisio, Carolina Di Somma, Maria Maisto, Gian Carlo Tenore, Annamaria Colao, and Silvia Savastano
Nutrition, 2018
[18]
Marina Canyelles, Mireia Tondo, Lídia Cedó, Marta Farràs, Joan Escolà-Gil, and Francisco Blanco-Vaca
International Journal of Molecular Sciences, 2018, Volume 19, Number 10, Page 3228
[19]
Rima Obeid, Hussain Awwad, Astrid Knell, Ulrich Hübner, and Jürgen Geisel
Nutrients, 2018, Volume 10, Number 9, Page 1209
[20]
Alejandra M. Wiedeman, Roger A. Dyer, Timothy J. Green, Zhaoming Xu, Susan I. Barr, Sheila M. Innis, and David D. Kitts
Clinical Biochemistry, 2018
[21]
Gard F.T. Svingen, Hui Zuo, Per M. Ueland, Reinhard Seifert, Kjetil H. Løland, Eva R. Pedersen, Peter M. Schuster, Therese Karlsson, Grethe S. Tell, Hall Schartum-Hansen, Hilde Olset, Mads Svenningsson, Elin Strand, Dennis W. Nilsen, Jan E. Nordrehaug, Indu Dhar, and Ottar Nygård
International Journal of Cardiology, 2018, Volume 267, Page 100
[22]
Ambika Satija and Frank B. Hu
Trends in Cardiovascular Medicine, 2018
[23]
Kinga Jaworska, Tomasz Huc, Emilia Samborowska, Leszek Dobrowolski, Klaudia Bielinska, Maciej Gawlak, Marcin Ufnal, and Mathias Chamaillard
PLOS ONE, 2017, Volume 12, Number 12, Page e0189310
[24]
Eke G. Gruppen, Erwin Garcia, Margery A. Connelly, Elias J. Jeyarajah, James D. Otvos, Stephan J. L. Bakker, and Robin P. F. Dullaart
Scientific Reports, 2017, Volume 7, Number 1
[25]
Ralf Krüger, Benedikt Merz, Manuela J. Rist, Paola G. Ferrario, Achim Bub, Sabine E. Kulling, and Bernhard Watzl
Molecular Nutrition & Food Research, 2017, Page 1700363
[26]
Steven H. Zeisel and Manya Warrier
Annual Review of Nutrition, 2017, Volume 37, Number 1, Page 157
[28]
Malene Hove-Skovsgaard, Julie Christine Gaardbo, Lilian Kolte, Kamilla Winding, Ingebjørg Seljeflot, Asbjørn Svardal, Rolf Kristian Berge, Jan Gerstoft, Henrik Ullum, Marius Trøseid, and Susanne Dam Nielsen
BMC Infectious Diseases, 2017, Volume 17, Number 1
[29]
Marina Makrecka-Kuka, Kristine Volska, Unigunde Antone, Reinis Vilskersts, Solveiga Grinberga, Dace Bandere, Edgars Liepinsh, and Maija Dambrova
Toxicology Letters, 2017, Volume 267, Page 32
[30]
Manuel Velasquez, Ali Ramezani, Alotaibi Manal, and Dominic Raj
Toxins, 2016, Volume 8, Number 11, Page 326

Comments (0)

Please log in or register to comment.
Log in