Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter / Tate, Jillian R.

12 Issues per year


IMPACT FACTOR 2017: 3.556

CiteScore 2017: 2.34

SCImago Journal Rank (SJR) 2017: 1.114
Source Normalized Impact per Paper (SNIP) 2017: 1.188

Online
ISSN
1437-4331
See all formats and pricing
More options …
Volume 56, Issue 1

Issues

Cancer sniffer dogs: how can we translate this peculiarity in laboratory medicine? Results of a pilot study on gastrointestinal cancers

Concetta Panebianco
  • Gastroenterology Unit, I.R.C.C.S. “Casa Sollievo della Sofferenza” Hospital, San Giovanni Rotondo (FG), Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Edgar Kelman / Kristel Vene
  • Competence Center of Food and Fermentation Technologies, Tallinn, Estonia
  • Department of Food Processing, Tallinn University of Technology, Tallinn, Estonia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Domenica Gioffreda
  • Gastroenterology Unit, I.R.C.C.S. “Casa Sollievo della Sofferenza” Hospital, San Giovanni Rotondo (FG), Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Francesca Tavano
  • Gastroenterology Unit, I.R.C.C.S. “Casa Sollievo della Sofferenza” Hospital, San Giovanni Rotondo (FG), Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Raivo Vilu
  • Competence Center of Food and Fermentation Technologies, Tallinn, Estonia
  • Department of Chemistry, Tallinn University of Technology, Tallinn, Estonia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fulvia Terracciano
  • Gastroenterology Unit, I.R.C.C.S. “Casa Sollievo della Sofferenza” Hospital, San Giovanni Rotondo (FG), Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Illar Pata / Kaarel Adamberg
  • Competence Center of Food and Fermentation Technologies, Tallinn, Estonia
  • Department of Food Processing, Tallinn University of Technology, Tallinn, Estonia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Angelo Andriulli
  • Gastroenterology Unit, I.R.C.C.S. “Casa Sollievo della Sofferenza” Hospital, San Giovanni Rotondo (FG), Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Valerio Pazienza
  • Corresponding author
  • Gastroenterology Unit, I.R.C.C.S. “Casa Sollievo della Sofferenza” Hospital, San Giovanni Rotondo (FG), Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-06-07 | DOI: https://doi.org/10.1515/cclm-2016-1158

Abstract

Background:

Identification of cancer biomarkers to allow early diagnosis is an urgent need for many types of tumors, whose prognosis strongly depends on the stage of the disease. Canine olfactory testing for detecting cancer is an emerging field of investigation. As an alternative, here we propose to use GC-Olfactometry (GC/O), which enables the speeding up of targeted biomarker identification and analysis. A pilot study was conducted in order to determine odor-active compounds in urine that discriminate patients with gastrointestinal cancers from control samples (healthy people).

Methods:

Headspace solid phase microextraction (HS-SPME)-GC/MS and GC-olfactometry (GC/O) analysis were performed on urine samples obtained from gastrointestinal cancer patients and healthy controls.

Results:

In total, 91 key odor-active compounds were found in the urine samples. Although no odor-active biomarkers present were found in cancer carrier’s urine, significant differences were discovered in the odor activities of 11 compounds in the urine of healthy and diseased people. Seven of above mentioned compounds were identified: thiophene, 2-methoxythiophene, dimethyl disulphide, 3-methyl-2-pentanone, 4-(or 5-)methyl-3-hexanone, 4-ethyl guaiacol and phenylacetic acid. The other four compounds remained unknown.

Conclusions:

GC/O has a big potential to identify compounds not detectable using untargeted GC/MS approach. This paves the way for further research aimed at improving and validating the performance of this technique so that the identified cancer-associated compounds may be introduced as biomarkers in clinical practice to support early cancer diagnosis.

Keywords: cancer sniffer dogs; gastrointestinal cancer; VOC

References

  • 1.

    Anderson BW, Ahlquist DA. Molecular detection of gastrointestinal neoplasia: Innovations in early detection and screening. Gastroenterol Clin North Am 2016;45:529–42.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 2.

    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015;136:E359–86.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 3.

    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015;65:87–108.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 4.

    Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M, MacIntyre MF, et al. The global burden of cancer 2013. JAMA Oncol 2015;1:505–27.Web of ScienceCrossrefPubMedGoogle Scholar

  • 5.

    Jin Z, Jiang W, Wang L. Biomarkers for gastric cancer: Progression in early diagnosis and prognosis (Review). Oncol Lett 2015;9:1502–8.PubMedGoogle Scholar

  • 6.

    D’Aronzo M, Vinciguerra M, Mazza T, Panebianco C, Saracino C, Pereira SP, et al. Fasting cycles potentiate the efficacy of gemcitabine treatment in in vitro and in vivo pancreatic cancer models. Oncotarget 2015;6:18545–57.PubMedCrossrefGoogle Scholar

  • 7.

    Vaccaro V, Sperduti I, Vari S, Bria E, Melisi D, Garufi C, et al. Metastatic pancreatic cancer: Is there a light at the end of the tunnel? World J Gastroenterol 2015;21:4788–801.CrossrefWeb of ScienceGoogle Scholar

  • 8.

    Tavano F, Fontana A, Pellegrini F, Burbaci FP, Rappa F, Cappello F, et al. Modeling interactions between Human Equilibrative Nucleoside Transporter-1 and other factors involved in the response to gemcitabine treatment to predict clinical outcomes in pancreatic ductal adenocarcinoma patients. J Transl Med 2014;12:248.Web of ScienceCrossrefPubMedGoogle Scholar

  • 9.

    Moser E, McCulloch M. Canine scent detection of human cancers: A review of methods and accuracy. J Vet Behav 2010;5:145–52.Web of ScienceCrossrefGoogle Scholar

  • 10.

    Probert CS, Ahmed I, Khalid T, Johnson E, Smith S, Ratcliffe N. Volatile organic compounds as diagnostic biomarkers in gastrointestinal and liver diseases. J Gastrointestin Liver Dis 2009;18:337–43.PubMedGoogle Scholar

  • 11.

    Sarosiek I, Schicho R, Blandon P, Bashashati M. Urinary metabolites as noninvasive biomarkers of gastrointestinal diseases: A clinical review. World J Gastrointest Oncol 2016;8:459–65.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 12.

    Lippi G, Cervellin G. Canine olfactory detection of cancer versus laboratory testing: myth or opportunity? Clin Chem Lab Med 2012;50:435–9.Web of SciencePubMedGoogle Scholar

  • 13.

    Cornu JN, Cancel-Tassin G, Ondet V, Girardet C, Cussenot O. Olfactory detection of prostate cancer by dogs sniffing urine: a step forward in early diagnosis. Eur Urol 2011;59:197–201.Web of SciencePubMedCrossrefGoogle Scholar

  • 14.

    Taverna G, Tidu L, Grizzi F, Torri V, Mandressi A, Sardella P, et al. Olfactory system of highly trained dogs detects prostate cancer in urine samples. J Urol 2015;193:1382–7.Web of ScienceCrossrefPubMedGoogle Scholar

  • 15.

    de Boer NK, de Meij TG, Oort FA, Ben Larbi I, Mulder CJ, van Bodegraven AA, et al. The scent of colorectal cancer: detection by volatile organic compound analysis. Clin Gastroenterol Hepatol 2014;12:1085–9.CrossrefWeb of SciencePubMedGoogle Scholar

  • 16.

    Lesniak A, Walczak M, Jezierski T, Sacharczuk M, Gawkowski M, Jaszczak K. Canine olfactory receptor gene polymorphism and its relation to odor detection performance by sniffer dogs. J Hered 2008;99:518–27.Web of SciencePubMedCrossrefGoogle Scholar

  • 17.

    Arasaradnam RP, Covington JA, Harmston C, Nwokolo CU. Review article: next generation diagnostic modalities in gastroenterology–gas phase volatile compound biomarker detection. Aliment Pharmacol Ther 2014;39:780–9.Web of SciencePubMedCrossrefGoogle Scholar

  • 18.

    Brattoli M, Cisternino E, Dambruoso PR, de Gennaro G, Giungato P, Mazzone A, et al. Gas chromatography analysis with olfactometric detection (GC-O) as a useful methodology for chemical characterization of odorous compounds. Sensors (Basel) 2013;13:16759–800.Web of SciencePubMedCrossrefGoogle Scholar

  • 19.

    Delahunty CM, Eyres G, Dufour JP. Gas chromatography-olfactometry. J Sep Sci 2006;29:2107–25.CrossrefPubMedGoogle Scholar

  • 20.

    Kusano M, Mendez E, Furton KG. Comparison of the volatile organic compounds from different biological specimens for profiling potential. J Forensic Sci 2013;58:29–39.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 21.

    Mazzone PJ, Wang XF, Lim S, Choi H, Jett J, Vachani A, et al. Accuracy of volatile urine biomarkers for the detection and characterization of lung cancer. BMC Cancer 2015;15:1001.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 22.

    Huang J, Kumar S, Abbassi-Ghadi N, Spaněl P, Smith D, Hanna GB. Selected ion flow tube mass spectrometry analysis of volatile metabolites in urine headspace for the profiling of gastro-esophageal cancer. Anal Chem 2013;85:3409–16.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 23.

    Hanai Y, Shimono K, Matsumura K, Vachani A, Albelda S, Yamazaki K, et al. Urinary volatile compounds as biomarkers for lung cancer. Biosci Biotechnol Biochem 2012;76:679–84.Web of ScienceCrossrefPubMedGoogle Scholar

  • 24.

    Khalid T, Aggio R, White P, De Lacy Costello B, Persad R, Al-Kateb H, et al. Urinary volatile organic compounds for the detection of prostate cancer. PLoS One 2015;10:e0143283.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 25.

    Navaneethan U, Parsi MA, Lourdusamy D, Grove D, Sanaka MR, Hammel JP, et al. Volatile organic compounds in urine for noninvasive diagnosis of malignant biliary strictures: A Pilot Study. Dig Dis Sci 2015;60:2150–7.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 26.

    Wang D, Wang C, Pi X, Guo L, Wang Y, Li M, et al. Urinary volatile organic compounds as potential biomarkers for renal cell carcinoma. Biomed Rep 2016;5:68–72.CrossrefWeb of SciencePubMedGoogle Scholar

  • 27.

    Arasaradnam RP, McFarlane MJ, Ryan-Fisher C, Westenbrink E, Hodges P, Thomas MG, et al. Detection of colorectal cancer (CRC) by urinary volatile organic compound analysis. PLoS One 2014;9:e108750.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 28.

    Silva CL, Passos M, Camara JS. Investigation of urinary volatile organic metabolites as potential cancer biomarkers by solid-phase microextraction in combination with gas chromatography-mass spectrometry. Br J Cancer 2011;105:1894–4.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 29.

    Vene K, Seisonen S, Koppel K, Leitner E, Paalme T. A Method for GC/Olfactometry panel training. Chemosens Percept 2013;6:179–89.Web of ScienceCrossrefGoogle Scholar

  • 30.

    Pickel D, Manucy GP, Walker DB, Hall SB, Walker JC. Evidence for canine olfactory detection of melanoma. Applied Animal Behaviour Science 2004;89:107–16.CrossrefGoogle Scholar

  • 31.

    Gazit I, Terkel J. Explosives detection by sniffer dogs following strenuous physical activity. Appl Anim Behav Sci 2003;81:149–61.CrossrefGoogle Scholar

  • 32.

    Williams M, Johnston JM. Training and maintaining the performance of dogs (Canis familiaris) on an increasing number of odor discriminations in a controlled setting. Appl Anim Behav Sci 2002;78:55–65.CrossrefGoogle Scholar

  • 33.

    Quignon P, Rimbault M, Robin S, Galibert F. Genetics of canine olfaction and receptor diversity. Mamm Genome 2012;23:132–43.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 34.

    Craven BA, Paterson EG, Settles GS. The fluid dynamics of canine olfaction: unique nasal airflow patterns as an explanation of macrosmia. J Royal Soc Interface 2010;7:933–43.Web of ScienceCrossrefGoogle Scholar

  • 35.

    Di Gangi IM, Mazza T, Fontana A, Copetti M, Fusilli C, Ippolito A, et al. Metabolomic profile in pancreatic cancer patients: a consensus-based approach to identify highly discriminating metabolites. Oncotarget 2016;7:5815–29.PubMedCrossrefGoogle Scholar

  • 36.

    Pavai S, Yap SF. The clinical significance of elevated levels of serum CA 19-9. Med J Malaysia 2003;58:667–72.PubMedGoogle Scholar

  • 37.

    Fontana A, Copetti M, Di Gangi IM, Mazza T, Tavano F, Gioffreda D, et al. Development of a metabolites risk score for one-year mortality risk prediction in pancreatic adenocarcinoma patients. Oncotarget 2016;7:8968–78.CrossrefPubMedGoogle Scholar

  • 38.

    Ranganathan P, Harsha HC, Pandey A. Molecular alterations in exocrine neoplasms of the pancreas. Arch Pathol Lab Med 2009;133:405–12.PubMedGoogle Scholar

  • 39.

    Urayama S, Zou W, Brooks K, Tolstikov V. Comprehensive mass spectrometry based metabolic profiling of blood plasma reveals potent discriminatory classifiers of pancreatic cancer. Rapid Commun Mass Spectrom 2010;24:613–20.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 40.

    Wang S, Chen X, Tang M. Quantitative assessment of the diagnostic role of MUC1 in pancreatic ductal adenocarcinoma. Tumour Biol 2014;35:9101–9.CrossrefPubMedGoogle Scholar

  • 41.

    Brand RE, Nolen BM, Zeh HJ, Allen PJ, Eloubeidi MA, Goldberg M, et al. Serum biomarker panels for the detection of pancreatic cancer. Clin Cancer Res 2011;17:805–16.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 42.

    Jezierski T, Walczak M, Ligor T, Rudnicka J, Buszewski B. Study of the art: canine olfaction used for cancer detection on the basis of breath odour. Perspectives and limitations. J Breath Res 2015;9:027001.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 43.

    Friedrich JE, Acree TE. Gas Chromatography Olfactometry (GC/O) of Dairy Products. Int Dairy J 1998;8:235–41.CrossrefGoogle Scholar

  • 44.

    Wagenstaller M, Buettner A. Quantitative determination of common urinary odorants and their glucuronide conjugates in human urine. Metabolites 2013;3:637–57.CrossrefPubMedGoogle Scholar

  • 45.

    Quignon P, Kirkness E, Cadieu E, Touleimat N, Guyon R, Renier C, et al. Comparison of the canine and human olfactory receptor gene repertoires. Genome Biol 2003;4:R80.CrossrefPubMedGoogle Scholar

  • 46.

    Barh D, Carpi A, Verma M, Gunduz M. Cancer biomarkers: Minimal and noninvasive early diagnosis and prognosis. Boca Raton, Florida, USA: Taylor and Francis, CRC Press, 2014.Google Scholar

  • 47.

    Kwak J, Gallagher M, Ozdener MH, Wysocki CJ, Goldsmith BR, Isamah A, et al. Volatile biomarkers from human melanoma cells. J Chromatogr B Analyt Technol Biomed Life Sci 2013;931:90–6.PubMedCrossrefGoogle Scholar

  • 48.

    Silva CL, Passos M, Camara JS. Solid phase microextraction, mass spectrometry and metabolomic approaches for detection of potential urinary cancer biomarkers–a powerful strategy for breast cancer diagnosis. Talanta 2012;89:360–8.CrossrefWeb of SciencePubMedGoogle Scholar

  • 49.

    Garner CE, Smith S, de Lacy Costello B, White P, Spencer R, Probert CS, et al. Volatile organic compounds from feces and their potential for diagnosis of gastrointestinal disease. Faseb J 2007;21:1675–88.Web of ScienceCrossrefPubMedGoogle Scholar

  • 50.

    Kakuta S, Nishiumi S, Yoshida M, Fukusaki E, Bamba T. Profiling of volatile compounds in APC(Min/+) mice blood by dynamic headspace extraction and gas chromatography/mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2015;1003:35–40.CrossrefGoogle Scholar

About the article

Corresponding author: Dr. Valerio Pazienza, Gastroenterology Unit, I.R.C.C.S. “Casa Sollievo della Sofferenza” Hospital, viale dei Cappuccini n.1, 71013 San Giovanni Rotondo (FG), Italy, Phone: +39-(0)882.416281, Fax: +39-(0)882.416271

aConcetta Panebianco and Edgar Kelman contributed equally to this work.


Received: 2016-12-19

Accepted: 2017-04-16

Published Online: 2017-06-07

Published in Print: 2017-11-27


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: The study was supported by a grant from the Italian Ministry of Health through Division of Gastroenterology (RC1403GA41 and RC1503GA40 to VP) IRCCS “Casa Sollievo della Sofferenza” Hospital and by the “5×1000” voluntary contributions. This research was supported also by European Regional Development Fund to Competence Center of Food and Fermentation Technologies (EU48667) and Institutional Research Funding to Tallinn University of Technology (IUT 19-27) of the Estonian Ministry of Education and Research and Industrie Alimentari Tamma s.r.l. (RV16GASTAMMA).

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.


Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), Volume 56, Issue 1, Pages 138–146, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/cclm-2016-1158.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in