Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter / Tate, Jillian R.

12 Issues per year


IMPACT FACTOR 2017: 3.556

CiteScore 2017: 2.34

SCImago Journal Rank (SJR) 2017: 1.114
Source Normalized Impact per Paper (SNIP) 2017: 1.188

Online
ISSN
1437-4331
See all formats and pricing
More options …
Volume 56, Issue 1

Issues

Circulating CD89-IgA complex does not predict deterioration of kidney function in Korean patients with IgA nephropathy

Jong Hyun Jhee
  • Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Republic of Korea
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hye-Young Kang
  • Severance Biomedical Science Institute, Brain Korea 21 PLUS, Yonsei University, Seoul, Republic of Korea
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Meiyan Wu
  • Severance Biomedical Science Institute, Brain Korea 21 PLUS, Yonsei University, Seoul, Republic of Korea
  • Department of Nephrology, The First Hospital of Jilin University, Changchun, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bo Young Nam
  • Severance Biomedical Science Institute, Brain Korea 21 PLUS, Yonsei University, Seoul, Republic of Korea
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tae-Ik Chang
  • Department of Internal Medicine, National Health Insurance Service Medical Center, Ilsan Hospital, Gyeonggi-do, Republic of Korea
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Su-Young Jung
  • Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Republic of Korea
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Seohyun Park
  • Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Republic of Korea
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hyoungnae Kim
  • Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Republic of Korea
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hae-Ryong Yun
  • Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Republic of Korea
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Youn Kyung Kee
  • Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Republic of Korea
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chang-Yun Yoon
  • Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Republic of Korea
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jung Tak Park
  • Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Republic of Korea
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tae-Hyun Yoo
  • Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Republic of Korea
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shin-Wook Kang
  • Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Republic of Korea
  • Severance Biomedical Science Institute, Brain Korea 21 PLUS, Yonsei University, Seoul, Republic of Korea
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Seung Hyeok Han
  • Corresponding author
  • Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-06-16 | DOI: https://doi.org/10.1515/cclm-2017-0090

Abstract

Background:

Soluble CD89 (sCD89)-IgA complex plays a key role in the pathogenesis of IgA nephropathy (IgAN). However, there is a lack of evidence supporting this complex as a good biomarker for disease progression. This study aimed to evaluate the usefulness of sCD89-IgA complex for risk stratification of IgAN.

Methods:

A total of 326 patients with biopsy-proven IgAN were included. sCD89-IgA complex was measured by sandwich-enzyme-linked immunosorbent assay. The study endpoints were a 30% decline in estimated glomerular filtration rate (eGFR).

Results:

sCD89-IgA complex levels were inversely and weakly associated with eGFR at the time of biopsy (r=−0.12, p=0.03). However, the significance between the two factors was lost in the multivariate linear regression after adjustment of clinical factors (β=0.35, p=0.75). In a multivariate Cox model, the highest (hazard ratio [HR], 0.75; 95% confidence interval [CI], 0.35–1.61; p=0.45) and middle (HR, 0.93; 95% CI, 0.46–1.89; p=0.84) tertiles of sCD89-IgA complex levels were not associated with an increased risk of developing a 30% decrease in eGFR. Furthermore, the decline rates in eGFR did not differ between groups and C-statistics revealed that the sCD89-IgA complex were not superior to clinical factors in predicting disease progression.

Conclusions:

This study found no association between sCD89-IgA complex levels and disease progression in IgAN. Although sCD89 can contribute to the formation of immune complexes, our findings suggest that the sCD89-IgA level is not a good predictor of adverse outcomes and has limited clinical utility as a biomarker for risk stratification in IgAN.

This article offers supplementary material which is provided at the end of the article.

Keywords: CD89; estimated glomerular filtration rate (eGFR); IgA nephropathy

References

  • 1.

    Wyatt RJ, Julian BA. IgA nephropathy. N Engl J Med 2013;368:2402–14.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 2.

    Schena FP. A retrospective analysis of the natural history of primary IgA nephropathy worldwide. Am J Med 1990;89:209–15.PubMedCrossrefGoogle Scholar

  • 3.

    Donadio JV, Grande JP. IgA nephropathy. N Engl J Med 2002;347:738–48.CrossrefWeb of SciencePubMedGoogle Scholar

  • 4.

    Barratt J, Feehally J. IgA nephropathy. J Am Soc Nephrol 2005;16:2088–97.CrossrefPubMedGoogle Scholar

  • 5.

    McGrogan A, Franssen CF, de Vries CS. The incidence of primary glomerulonephritis worldwide: a systematic review of the literature. Nephrol Dial Transplant 2011;26:414–30.Web of SciencePubMedCrossrefGoogle Scholar

  • 6.

    Radhakrishnan J, Cattran DC. The KDIGO practice guideline on glomerulonephritis: reading between the (guide)lines – application to the individual patient. Kidney Int 2012;82:840–56.Web of ScienceCrossrefPubMedGoogle Scholar

  • 7.

    Rauen T, Eitner F, Fitzner C, Sommerer C, Zeier M, Otte B, et al. Intensive supportive care plus immunosuppression in IgA nephropathy. N Engl J Med 2015;373:2225–36.PubMedCrossrefGoogle Scholar

  • 8.

    Berthelot L, Papista C, Maciel TT, Biarnes-Pelicot M, Tissandie E, Wang PH, et al. Transglutaminase is essential for IgA nephropathy development acting through IgA receptors. J Exp Med 2012;209:793–806.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 9.

    Moura IC, Arcos-Fajardo M, Gdoura A, Leroy V, Sadaka C, Mahlaoui N, et al. Engagement of transferrin receptor by polymeric IgA1: evidence for a positive feedback loop involving increased receptor expression and mesangial cell proliferation in IgA nephropathy. J Am Soc Nephrol 2005;16:2667–76.CrossrefPubMedGoogle Scholar

  • 10.

    Floege J. The pathogenesis of IgA nephropathy: what is new and how does it change therapeutic approaches? Am J Kidney Dis 2011;58:992–1004.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 11.

    Mestecky J, Tomana M, Moldoveanu Z, Julian BA, Suzuki H, Matousovic K, et al. Role of aberrant glycosylation of IgA1 molecules in the pathogenesis of IgA nephropathy. Kidney Blood Press Res 2008;31:29–37.Web of ScienceCrossrefPubMedGoogle Scholar

  • 12.

    Tanaka M, Seki G, Someya T, Nagata M, Fujita T. Aberrantly glycosylated IgA1 as a factor in the pathogenesis of IgA nephropathy. Clin Dev Immunol 2011;2011:470803.Web of SciencePubMedGoogle Scholar

  • 13.

    Ding JX, Xu LX, Lv JC, Zhao MH, Zhang H, Wang HY. Aberrant sialylation of serum IgA1 was associated with prognosis of patients with IgA nephropathy. Clin Immunol 2007;125:268–74.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 14.

    Suzuki H, Fan R, Zhang Z, Brown R, Hall S, Julian BA, et al. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest 2009;119:1668–77.PubMedWeb of ScienceGoogle Scholar

  • 15.

    Haddad E, Moura IC, Arcos-Fajardo M, Macher MA, Baudouin V, Alberti C, et al. Enhanced expression of the CD71 mesangial IgA1 receptor in Berger disease and Henoch-Schonlein nephritis: association between CD71 expression and IgA deposits. J Am Soc Nephrol 2003;14:327–37.CrossrefPubMedGoogle Scholar

  • 16.

    Moura IC, Centelles MN, Arcos-Fajardo M, Malheiros DM, Collawn JF, Cooper MD, et al. Identification of the transferrin receptor as a novel immunoglobulin (Ig)A1 receptor and its enhanced expression on mesangial cells in IgA nephropathy. J Exp Med 2001;194:417–25.CrossrefPubMedGoogle Scholar

  • 17.

    Roos A, Bouwman LH, van Gijlswijk-Janssen DJ, Faber-Krol MC, Stahl GL, Daha MR. Human IgA activates the complement system via the mannan-binding lectin pathway. J Immunol 2001;167:2861–8.PubMedCrossrefGoogle Scholar

  • 18.

    Roos A, Rastaldi MP, Calvaresi N, Oortwijn BD, Schlagwein N, van Gijlswijk-Janssen DJ, et al. Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease. J Am Soc Nephrol 2006;17:1724–34.CrossrefPubMedGoogle Scholar

  • 19.

    Floege J, Eitner F, Alpers CE. A new look at platelet-derived growth factor in renal disease. J Am Soc Nephrol 2008;19: 12–23.CrossrefWeb of ScienceGoogle Scholar

  • 20.

    Boor P, Ostendorf T, Floege J. Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat Rev Nephrol 2010;6:643–56.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 21.

    Zeisberg M, Neilson EG. Mechanisms of tubulointerstitial fibrosis. J Am Soc Nephrol 2010;21:1819–34.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 22.

    Ichii O, Otsuka S, Sasaki N, Yabuki A, Ohta H, Takiguchi M, et al. Local overexpression of interleukin-1 family, member 6 relates to the development of tubulointerstitial lesions. Lab Invest 2010;90:459–75.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 23.

    van der Boog PJ, De Fijter JW, Van Kooten C, Van Der Holst R, Van Seggelen A, Van Es LA, et al. Complexes of IgA with FcalphaRI/CD89 are not specific for primary IgA nephropathy. Kidney Int 2003;63:514–21.PubMedCrossrefGoogle Scholar

  • 24.

    Maliszewski CR, March CJ, Schoenborn MA, Gimpel S, Shen L. Expression cloning of a human Fc receptor for IgA. J Exp Med 1990;172:1665–72.CrossrefPubMedGoogle Scholar

  • 25.

    Mostov KE. Transepithelial transport of immunoglobulins. Annu Rev Immunol 1994;12:63–84.CrossrefPubMedGoogle Scholar

  • 26.

    Yanagihara T, Kumagai Y, Norose Y, Moro I, Nanno M, Murakami M, et al. Age-dependent decrease of polymeric Ig receptor expression and IgA elevation in ddY mice: a possible cause of IgA nephropathy. Lab Invest 2004;84:63–70.CrossrefPubMedGoogle Scholar

  • 27.

    Inoue T, Sugiyama H, Hiki Y, Takiue K, Morinaga H, Kitagawa M, et al. Differential expression of glycogenes in tonsillar B lymphocytes in association with proteinuria and renal dysfunction in IgA nephropathy. Clin Immunol 2010;136:447–55.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 28.

    Stockert RJ, Kressner MS, Collins JC, Sternlieb I, Morell AG. IgA interaction with the asialoglycoprotein receptor. Proc Natl Acad Sci U S A 1982;79:6229–31.PubMedCrossrefGoogle Scholar

  • 29.

    Hahn-Zoric M, Vuong M, Lundberg S, Wramner L, Ahlmen J, Hanson LÅ, et al. Su.82. evidence for genetic regulation of Fc alpha receptor (CD89) expression: study of soluble CD89 in plasma of IgA nephropathy patients and healthy controls. Clin Immunol 2008;127:S151.CrossrefWeb of ScienceGoogle Scholar

  • 30.

    Monteiro RC, Van De Winkel JG. IgA Fc receptors. Annu Rev Immunol 2003;21:177–204.PubMedCrossrefGoogle Scholar

  • 31.

    Vuong MT, Hahn-Zoric M, Lundberg S, Gunnarsson I, van Kooten C, Wramner L, et al. Association of soluble CD89 levels with disease progression but not susceptibility in IgA nephropathy. Kidney Int 2010;78:1281–7.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 32.

    Launay P, Grossetete B, Arcos-Fajardo M, Gaudin E, Torres SP, Beaudoin L, et al. Fcalpha receptor (CD89) mediates the development of immunoglobulin A (IgA) nephropathy (Berger’s disease). Evidence for pathogenic soluble receptor-Iga complexes in patients and CD89 transgenic mice. J Exp Med 2000;191:1999–2009.CrossrefPubMedGoogle Scholar

  • 33.

    Berthelot L, Robert T, Vuiblet V, Tabary T, Braconnier A, Drame M, et al. Recurrent IgA nephropathy is predicted by altered glycosylated IgA, autoantibodies and soluble CD89 complexes. Kidney Int 2015;88:815–22.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 34.

    Barbour SJ, Reich HN. Risk stratification of patients with IgA nephropathy. Am J Kidney Dis 2012;59:865–73.Web of ScienceCrossrefPubMedGoogle Scholar

  • 35.

    Geddes CC, Rauta V, Gronhagen-Riska C, Bartosik LP, Jardine AG, Ibels LS, et al. A tricontinental view of IgA nephropathy. Nephrol Dial Transplant 2003;18:1541–8.CrossrefPubMedGoogle Scholar

  • 36.

    Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 1999;130:461–70.CrossrefGoogle Scholar

  • 37.

    van Zandbergen G, Westerhuis R, Mohamad NK, van De Winkel JG, Daha MR, van Kooten C. Crosslinking of the human Fc receptor for IgA (FcalphaRI/CD89) triggers FcR gamma-chain-dependent shedding of soluble CD89. J Immunol 1999;163:5806–12.PubMedGoogle Scholar

  • 38.

    Grossetete B, Launay P, Lehuen A, Jungers P, Bach JF, Monteiro RC. Down-regulation of Fc alpha receptors on blood cells of IgA nephropathy patients: evidence for a negative regulatory role of serum IgA. Kidney Int 1998;53:1321–35.PubMedCrossrefGoogle Scholar

  • 39.

    Boyd JK, Barratt J. Immune complex formation in IgA nephropathy: CD89 a ‘saint’ or a ‘sinner’? Kidney Int 2010;78:1211–3.Web of ScienceCrossrefGoogle Scholar

  • 40.

    Morton HC, Brandtzaeg P. CD89: the human myeloid IgA Fc receptor. Arch Immunol Ther Exp (Warsz) 2001;49:217–29.PubMedGoogle Scholar

  • 41.

    Birmingham DJ, Irshaid F, Nagaraja HN, Zou X, Tsao BP, Wu H, et al. The complex nature of serum C3 and C4 as biomarkers of lupus renal flare. Lupus 2010;19:1272–80.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 42.

    Radford MG Jr, Donadio JV Jr, Bergstralh EJ, Grande JP. Predicting renal outcome in IgA nephropathy. J Am Soc Nephrol 1997;8:199–207.PubMedGoogle Scholar

  • 43.

    Tissandie E, Morelle W, Berthelot L, Vrtovsnik F, Daugas E, Walker F, et al. Both IgA nephropathy and alcoholic cirrhosis feature abnormally glycosylated IgA1 and soluble CD89-IgA and IgG-IgA complexes: common mechanisms for distinct diseases. Kidney Int 2011;80:1352–63.Web of SciencePubMedCrossrefGoogle Scholar

  • 44.

    van der Boog PJ, van Zandbergen G, de Fijter JW, Klar-Mohamad N, van Seggelen A, Brandtzaeg P, et al. Fc alpha RI/CD89 circulates in human serum covalently linked to IgA in a polymeric state. J Immunol 2002;168:1252–8.CrossrefGoogle Scholar

  • 45.

    Westerhuis R, Van Zandbergen G, Verhagen NA, Klar-Mohamad N, Daha MR, van Kooten C. Human mesangial cells in culture and in kidney sections fail to express Fc alpha receptor (CD89). J Am Soc Nephrol 1999;10:770–8.PubMedGoogle Scholar

  • 46.

    Leung JC, Tsang AW, Chan DT, Lai KN. Absence of CD89, polymeric immunoglobulin receptor, and asialoglycoprotein receptor on human mesangial cells. J Am Soc Nephrol 2000;11:241–9.PubMedGoogle Scholar

  • 47.

    Diven SC, Caflisch CR, Hammond DK, Weigel PH, Oka JA, Goldblum RM. IgA induced activation of human mesangial cells: independent of FcalphaR1 (CD 89). Kidney Int 1998;54:837–47.PubMedCrossrefGoogle Scholar

  • 48.

    Lechner SM, Abbad L, Boedec E, Papista C, Le Stang MB, Moal C, et al. IgA1 protease treatment reverses mesangial deposits and hematuria in a model of IgA nephropathy. J AM Soc Nephrol 2016;27:2622–9.Web of ScienceGoogle Scholar

  • 49.

    Moresco RN, Speeckaert MM, Zmonarski SC, Krajewska M, Komuda-Leszek E, Perkowska-Ptasinska A, et al. Urinary myeloid IgA Fc alpha receptor (CD89) and transglutaminase-2 as new biomarkers for active IgA nephropathy and henoch-Schonlein purpura nephritis. BBA Clin 2016;5:79–84.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 50.

    Barbour SJ, Cattran DC, Kim SJ, Levin A, Wald R, Hladunewich MA, et al. Individuals of Pacific Asian origin with IgA nephropathy have an increased risk of progression to end-stage renal disease. Kidney Int 2013;84:1017–24.CrossrefPubMedWeb of ScienceGoogle Scholar

About the article

Corresponding author: Seung Hyeok Han, MD, PhD, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea, Phone: 82-2-2228-1984, Fax: 82-2-393-6884

aJong Hyun Jhee and Hye-Young Kang contributed equally to this work.


Received: 2017-01-31

Accepted: 2017-04-17

Published Online: 2017-06-16

Published in Print: 2017-11-27


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Financial support: This study was supported by a faculty research grant of Yonsei University College of Medicine for 2015; Dr. Wu M is supported by China Scholarship Council.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.


Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), Volume 56, Issue 1, Pages 75–85, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/cclm-2017-0090.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in