Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter / Tate, Jillian R.

12 Issues per year


IMPACT FACTOR 2017: 3.556

CiteScore 2017: 2.34

SCImago Journal Rank (SJR) 2017: 1.114
Source Normalized Impact per Paper (SNIP) 2017: 1.188

Online
ISSN
1437-4331
See all formats and pricing
More options …
Volume 56, Issue 1

Issues

Effects of procalcitonin testing on antibiotic use and clinical outcomes in patients with upper respiratory tract infections. An individual patient data meta-analysis

Jonas Odermatt / Natalie Friedli / Alexander Kutz / Matthias Briel
  • Basel Institute for Clinical Epidemiology and Biostatistics, University Hospital Basel, Basel, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Heiner C. Bucher
  • Basel Institute for Clinical Epidemiology and Biostatistics, University Hospital Basel, Basel, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mirjam Christ-Crain
  • Division of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Basel, Basel, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Olaf Burkhardt / Tobias Welte / Beat Mueller / Philipp Schuetz
  • Corresponding author
  • University Department of Medicine, Kantonsspital Aarau, Aarau, Switzerland
  • Medical Faculty, University of Basel, Basel, Switzerland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-06-29 | DOI: https://doi.org/10.1515/cclm-2017-0252

Abstract

Background:

Several trials found procalcitonin (PCT) helpful for guiding antibiotic treatment in patients with lower respiratory tract infections and sepsis. We aimed to perform an individual patient data meta-analysis on the effects of PCT guided antibiotic therapy in upper respiratory tract infections (URTI).

Methods:

A comprehensive search of the literature was conducted using PubMed (MEDLINE) and Cochrane Library to identify relevant studies published until September 2016. We reanalysed individual data of adult URTI patients with a clinical diagnosis of URTI. Data of two trials were used based on PRISMA-IPD guidelines. Safety outcomes were (1) treatment failure defined as death, hospitalization, ARI-specific complications, recurrent or worsening infection at 28 days follow-up; and (2) restricted activity within a 14-day follow-up. Secondary endpoints were initiation of antibiotic therapy, and total days of antibiotic exposure.

Results:

In total, 644 patients with a follow up of 28 days had a final diagnosis of URTI and were thus included in this analysis. There was no difference in treatment failure (33.1% vs. 34.0%, OR 1.0, 95% CI 0.7–1.4; p=0.896) and days with restricted activity between groups (8.0 vs. 8.0 days, regression coefficient 0.2 (95% CI –0.4 to 0.9), p=0.465). However, PCT guided antibiotic therapy resulted in lower antibiotic prescription (17.8% vs. 51.0%, OR 0.2, 95% CI 0.1–0.3; p<0.001) and in a 2.4 day (95% CI –2.9 to –1.9; p<0.001) shorter antibiotic exposure compared to control patients.

Conclusions:

PCT guided antibiotic therapy in the primary care setting was associated with reduced antibiotic exposure in URTI patients without compromising outcomes.

This article offers supplementary material which is provided at the end of the article.

Keywords: lower antibiotic exposure; meta-analysis; primary care setting; procalcitonin; procalcitonin guided antibiotic prescription; upper respiratory tract infection

References

  • 1.

    Gonzales R, Steiner JF, Sande MA. Antibiotic prescribing for adults with colds, upper respiratory tract infections, and bronchitis by ambulatory care physicians. J Am Med Assoc 1997;278:901–4.CrossrefGoogle Scholar

  • 2.

    Dixon RE. Economic costs of respiratory tract infections in the United States. Am J Med 1985;78:45–51.PubMedCrossrefGoogle Scholar

  • 3.

    Evans AT, Husain S, Durairaj L, Sadowski LS, Charles-Damte M, Wang Y. Azithromycin for acute bronchitis: a randomised, double-blind, controlled trial. Lancet 2002;359:1648–54.PubMedCrossrefGoogle Scholar

  • 4.

    Macfarlane JT, Colville A, Guion A, Macfarlane RM, Rose DH. Prospective study of aetiology and outcome of adult lower-respiratory-tract infections in the community. Lancet 1993;341:511–4.CrossrefPubMedGoogle Scholar

  • 5.

    Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 2006;34:1589–96.CrossrefPubMedGoogle Scholar

  • 6.

    Kumar A, Ellis P, Arabi Y, Roberts D, Light B, Parrillo JE, et al. Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest 2009;136:1237–48.CrossrefWeb of ScienceGoogle Scholar

  • 7.

    Lawrence KL, Kollef MH. Antimicrobial stewardship in the intensive care unit: advances and obstacles. Am J Respir Crit Care Med 2009;179:434–8.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 8.

    Muller B, Becker KL. Procalcitonin: how a hormone became a marker and mediator of sepsis. Swiss Med Wkly 2001;131: 595–602.PubMedGoogle Scholar

  • 9.

    Muller B, Becker KL, Schachinger H, Rickenbacher PR, Huber PR, Zimmerli W, et al. Calcitonin precursors are reliable markers of sepsis in a medical intensive care unit. Crit Care Med 2000;28:977–83.CrossrefGoogle Scholar

  • 10.

    Karlsson S, Heikkinen M, Pettila V, Alila S, Vaisanen S, Pulkki K, et al. Predictive value of procalcitonin decrease in patients with severe sepsis: a prospective observational study. Crit Care 2010;14:R205.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 11.

    Kutz A, Briel M, Christ-Crain M, Stolz D, Bouadma L, Wolff M, et al. Prognostic value of procalcitonin in respiratory tract infections across clinical settings. Crit Care 2015;19:74.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 12.

    Briel M, Schuetz P, Mueller B, Young J, Schild U, Nusbaumer C, et al. Procalcitonin-guided antibiotic use vs a standard approach for acute respiratory tract infections in primary care. Arch Intern Med 2008;168:2000–7.CrossrefWeb of ScienceGoogle Scholar

  • 13.

    Burkhardt O, Ewig S, Haagen U, Giersdorf S, Hartmann O, Wegscheider K, et al. Procalcitonin guidance and reduction of antibiotic use in acute respiratory tract infection. Eur Respir J 2010;36:601–7.CrossrefWeb of SciencePubMedGoogle Scholar

  • 14.

    Christ-Crain M, Jaccard-Stolz D, Bingisser R, Gencay MM, Huber PR, Tamm M, et al. Effect of procalcitonin-guided treatment on antibiotic use and outcome in lower respiratory tract infections: cluster-randomised, single-blinded intervention trial. Lancet 2004;363:600–7.PubMedCrossrefGoogle Scholar

  • 15.

    Christ-Crain M, Stolz D, Bingisser R, Muller C, Miedinger D, Huber PR, et al. Procalcitonin guidance of antibiotic therapy in community-acquired pneumonia: a randomized trial. Am J Respir Crit Care Med 2006;174:84–93.PubMedCrossrefGoogle Scholar

  • 16.

    Stolz D, Christ-Crain M, Bingisser R, Leuppi J, Miedinger D, Muller C, et al. Antibiotic treatment of exacerbations of COPD: a randomized, controlled trial comparing procalcitonin-guidance with standard therapy. Chest 2007;131:9–19.CrossrefPubMedGoogle Scholar

  • 17.

    Kristoffersen KB, Sogaard OS, Wejse C, Black FT, Greve T, Tarp B, et al. Antibiotic treatment interruption of suspected lower respiratory tract infections based on a single procalcitonin measurement at hospital admission – a randomized trial. Clin Microbiol Infect 2009;15:481–7.Web of SciencePubMedCrossrefGoogle Scholar

  • 18.

    Long W, Deng X, Zhang Y, Lu G, Xie J, Tang J. Procalcitonin-guidance for reduction of antibiotic use in low-risk outpatients with community acquired pneumonia. Respirology 2011;16:819–24.Web of SciencePubMedCrossrefGoogle Scholar

  • 19.

    Long W, Deng XQ, Tang JG, Xie J, Zhang YC, Zhang Y, et al. [The value of serum procalcitonin in treatment of community acquired pneumonia in outpatient]. Zhonghua nei ke za zhi [Chin J Internal Med] 2009;48:216–9.Google Scholar

  • 20.

    Schuetz P, Christ-Crain M, Thomann R, Falconnier C, Wolbers M, Widmer I, et al. Effect of procalcitonin-based guidelines vs standard guidelines on antibiotic use in lower respiratory tract infections: the ProHOSP randomized controlled trial. J Am Med Assoc 2009;302:1059–66.CrossrefWeb of ScienceGoogle Scholar

  • 21.

    Nobre V, Harbarth S, Graf JD, Rohner P, Pugin J. Use of procalcitonin to shorten antibiotic treatment duration in septic patients: a randomized trial. Am J Respir Crit Care Med 2008;177:498–505.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 22.

    Stolz D, Smyrnios N, Eggimann P, Pargger H, Thakkar N, Siegemund M, et al. Procalcitonin for reduced antibiotic exposure in ventilator-associated pneumonia: a randomised study. Eur Respir Rev 2009;34:1364–75.CrossrefGoogle Scholar

  • 23.

    Bouadma L, Luyt CE, Tubach F, Cracco C, Alvarez A, Schwebel C, et al. Use of procalcitonin to reduce patients’ exposure to antibiotics in intensive care units (PRORATA trial): a multicentre randomised controlled trial. Lancet 2010;375: 463–74.CrossrefWeb of ScienceGoogle Scholar

  • 24.

    Schroeder S, Hochreiter M, Koehler T, Schweiger AM, Bein B, Keck FS, et al. Procalcitonin (PCT)-guided algorithm reduces length of antibiotic treatment in surgical intensive care patients with severe sepsis: results of a prospective randomized study. Langenbecks Arch Surg 2009;394:221–6.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 25.

    Hochreiter M, Kohler T, Schweiger AM, Keck FS, Bein B, von Spiegel T, et al. Procalcitonin to guide duration of antibiotic therapy in intensive care patients: a randomized prospective controlled trial. Crit Care 2009;13:R83.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 26.

    Schuetz P, Mueller B. Biomarker-guided de-escalation of empirical therapy is associated with lower risk for adverse outcomes. Intensive Care Med 2014;40:141.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 27.

    de Jong E, van Oers JA, Beishuizen A, Vos P, Vermeijden WJ, Haas LE, et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: a randomised, controlled, open-label trial. Lancet Infect Dis 2016;16:819–27.Web of ScienceCrossrefPubMedGoogle Scholar

  • 28.

    Schuetz P, Briel M, Christ-Crain M, Stolz D, Bouadma L, Wolff M, et al. Procalcitonin to guide initiation and duration of antibiotic treatment in acute respiratory infections: an individual patient data meta-analysis. Clin Infect Dis 2012;55:651–62.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 29.

    Stewart LA, Clarke M, Rovers M, Riley RD, Simmonds M, Stewart G, et al. Preferred reporting items for systematic review and meta-analyses of individual participant data: the PRISMA-IPD Statement. J Am Med Assoc 2015;313:1657–65.CrossrefGoogle Scholar

  • 30.

    Schuetz P, Muller B, Christ-Crain M, Stolz D, Tamm M, Bouadma L, et al. Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections. Cochrane Database Syst Rev 2012;9:CD007498.Google Scholar

  • 31.

    Thompson SG, Turner RM, Warn DE. Multilevel models for meta-analysis, and their application to absolute risk differences. Stat Methods Med Res 2001;10:375–92.CrossrefPubMedGoogle Scholar

  • 32.

    Turner RM, Omar RZ, Yang M, Goldstein H, Thompson SG. A multilevel model framework for meta-analysis of clinical trials with binary outcomes. Stat Med 2000;19:3417–32.CrossrefPubMedGoogle Scholar

  • 33.

    Burkhardt O, Ewig S, Haagen U, Giersdorf S, Hartmann O, Wegscheider K, et al. Procalcitonin guidance and reduction of antibiotic use in acute respiratory tract infection. Eur Respir J 2010;36:601–7.CrossrefWeb of SciencePubMedGoogle Scholar

  • 34.

    Drozdov D, Schwarz S, Kutz A, Grolimund E, Rast AC, Steiner D, et al. Procalcitonin and pyuria-based algorithm reduces antibiotic use in urinary tract infections: a randomized controlled trial. BMC Med. 2015;13:104.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 35.

    Schuetz P, Chiappa V, Briel M, Greenwald JL. Procalcitonin algorithms for antibiotic therapy decisions: a systematic review of randomized controlled trials and recommendations for clinical algorithms. Arch Intern Med 2011;171:1322–31.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 36.

    Spellberg B, Bartlett JG, Gilbert DN. The future of antibiotics and resistance. N Engl J Med 2013;368:299–302.CrossrefWeb of SciencePubMedGoogle Scholar

  • 37.

    Meili M, Muller B, Kulkarni P, Schutz P. Management of patients with respiratory infections in primary care: procalcitonin, C-reactive protein or both? Expert Rev Respir Med 2015;9:587–601.Web of ScienceCrossrefPubMedGoogle Scholar

  • 38.

    Schuetz P, Balk R, Briel M, Kutz A, Christ-Crain M, Stolz D, et al. Economic evaluation of procalcitonin-guided antibiotic therapy in acute respiratory infections: a US health system perspective. Clin Chem Lab Med 2015;53:583–92.PubMedWeb of ScienceGoogle Scholar

  • 39.

    Schuetz P, Birkhahn R, Sherwin R, Jones AE, Singer A, Kline JA, et al. Serial procalcitonin predicts mortality in severe sepsis patients: Results from the Multicenter Procalcitonin MOnitoring SEpsis (MOSES) Study. Crit Care Med 2017;45:781–9.CrossrefWeb of SciencePubMedGoogle Scholar

  • 40.

    Musher DM, Thorner AR. Community-acquired pneumonia. N Engl J Med 2014;371:1619–28.PubMedCrossrefGoogle Scholar

  • 41.

    Young J, De Sutter A, Merenstein D, van Essen GA, Kaiser L, Varonen H, et al. Antibiotics for adults with clinically diagnosed acute rhinosinusitis: a meta-analysis of individual patient data. Lancet 2008;371:908–14.Web of ScienceCrossrefPubMedGoogle Scholar

  • 42.

    Kutz A, Grolimund E, Christ-Crain M, Thomann R, Falconnier C, Hoess C, et al. Pre-analytic factors and initial biomarker levels in community-acquired pneumonia patients. BMC Anesthesiol 2014;14:102.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 43.

    Do NT, Ta NT, Tran NT, Than HM, Vu BT, Hoang LB, et al. Point-of-care C-reactive protein testing to reduce inappropriate use of antibiotics for non-severe acute respiratory infections in Vietnamese primary health care: a randomised controlled trial. Lancet Glob Health 2016;4:e633–41.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 44.

    Cals JW, de Bock L, Beckers PJ, Francis NA, Hopstaken RM, Hood K, et al. Enhanced communication skills and C-reactive protein point-of-care testing for respiratory tract infection: 3.5-year follow-up of a cluster randomized trial. Ann Fam Med 2013;11:157–64.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 45.

    Zhydkov A, Christ-Crain M, Thomann R, Hoess C, Henzen C, Werner Z, et al. Utility of procalcitonin, C-reactive protein and white blood cells alone and in combination for the prediction of clinical outcomes in community-acquired pneumonia. Clin Chem Lab Med 2015;53:559–66.PubMedWeb of ScienceGoogle Scholar

  • 46.

    Schuetz P, Aujesky D, Muller C, Muller B. Biomarker-guided personalised emergency medicine for all – hope for another hype? Swiss Med Wkly 2015;145:w14079.PubMedWeb of ScienceGoogle Scholar

  • 47.

    Schuetz P, Albrich W, Mueller B. Procalcitonin for diagnosis of infection and guide to antibiotic decisions: past, present and future. BMC Med 2011;9:107.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 48.

    Meili M, Kutz A, Briel M, Christ-Crain M, Bucher HC, Mueller B, et al. Infection biomarkers in primary care patients with acute respiratory tract infections-comparison of Procalcitonin and C-reactive protein. BMC Pulm Med 2016;16:43.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 49.

    Christensen AM, Thomsen MK, Ovesen T, Klug TE. Are procalcitonin or other infection markers useful in the detection of group A streptococcal acute tonsillitis? Scand J Infect Dis 2014;46:376–83.Web of ScienceCrossrefGoogle Scholar

About the article

Corresponding author: Prof. Philipp Schuetz, MD, MPH, University Department of Medicine, Kantonsspital Aarau, Tellstrasse, 5001 Aarau, Switzerland, Phone: +41628389524, Fax: +41628386945


Received: 2017-03-23

Accepted: 2017-05-02

Published Online: 2017-06-29

Published in Print: 2017-11-27


Author contributions: Mr Odermatt, Ms Friedli, Mr Kutz and Mr. Schuetz had full access to all of the data in the study and take responsibility for the integrity of the data and performed the statistical work, and drafted the manuscript. All authors helped to interpret the findings, read and revised the manuscript critically for important intellectual content. All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Availability of data and material: The datasets used and/or analysed during the current study is available from the corresponding author on reasonable request.

Research funding: This investigator-initiated PARTI trial was sponsored by a grant from the Swiss National Science Foundation (3300C0-107772) and by the Association for the Promotion of Science and Postgraduate Training of the University Hospital Basel. Brahms AG provided assay and kit material related to the study. Drs. Christ-Crain, Mueller, and Schuetz, received support from BRAHMS to attend meetings and fulfilled speaking engagements. Drs. Schuetz, Kutz, Christ-Crain and Mueller received support from bioMérieux to attend meetings and fulfilled speaking engagements. Heiner C. Bucher has received research support from BRAHMS. Dr. Schuetz and Dr. Christ-Crain were supported by funds of the Freiwillige Akademische Gesellschaft, the Department of Endocrinology, Diabetology and Clinical Nutrition, and the Department of Clinical Chemistry, all Basel, Switzerland.

Employment or leadership: Dr. Mueller has served as a consultant and received research support from BRAHMS and bioMérieux.

Honorarium: None declared.

Competing interests: The funding organisation(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.


Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), Volume 56, Issue 1, Pages 170–177, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/cclm-2017-0252.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Giuseppe Lippi and Gianfranco Cervellin
Clinical Chemistry and Laboratory Medicine (CCLM), 2018, Volume 0, Number 0
[2]
Marian S. McDonagh, Kim Peterson, Kevin Winthrop, Amy Cantor, Brittany H. Lazur, and David I. Buckley
Journal of International Medical Research, 2018, Page 030006051878251

Comments (0)

Please log in or register to comment.
Log in