Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Greaves, Ronda / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter


IMPACT FACTOR 2018: 3.638

CiteScore 2018: 2.44

SCImago Journal Rank (SJR) 2018: 1.191
Source Normalized Impact per Paper (SNIP) 2018: 1.205

Online
ISSN
1437-4331
See all formats and pricing
More options …
Volume 56, Issue 10

Issues

Reference standards for the detection of anti-mitochondrial and anti-rods/rings autoantibodies

S. John Calise / Bing Zheng / Tomoko Hasegawa
  • Department of Clinical Nursing, University of Occupational and Environmental Health, Kitakyushu, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Minoru Satoh
  • Department of Clinical Nursing, University of Occupational and Environmental Health, Kitakyushu, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Natasa Isailovic
  • Laboratory of Autoimmunity and Metabolism, Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Milan, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Angela Ceribelli
  • Laboratory of Autoimmunity and Metabolism, Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Milan, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Luis E.C. Andrade
  • Division of Rheumatology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
  • Immunology Division, Fleury Medicine and Health Laboratories, São Paulo, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Katherine Boylan / Ilaria Cavazzana
  • Department of Clinical and Experimental Science, University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marvin J. Fritzler / Ignacio Garcia de la Torre
  • Department of Immunology and Rheumatology, Hospital General de Occidente and University of Guadalajara, Guadalajara, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Falk Hiepe
  • Charité – Universitätsmedizin Berlin and Deutsches Rheumaforschungszentrum Berlin, Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kathryn Kohl / Carlo Selmi
  • Laboratory of Autoimmunity and Metabolism, Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Milan, Italy
  • BIOMETRA Department, University of Milan, Milan, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yehuda Shoenfeld / Angela Tincani
  • Department of Clinical and Experimental Science, University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Edward K.L. Chan /
Published Online: 2018-02-26 | DOI: https://doi.org/10.1515/cclm-2017-1152

Abstract

Background:

Anti-mitochondrial antibodies (AMA) are found in >90% of primary biliary cholangitis patients. Anti-rods/rings antibodies (anti-RR) are most commonly associated with interferon-α and ribavirin treatment in hepatitis C patients. Clinical laboratories routinely screen for AMA and anti-RR using indirect immunofluorescence on HEp-2 cells (HEp-2-IFA). Therefore, we sought to establish reference materials for use in AMA and anti-RR testing.

Methods:

AMA-positive and anti-RR-positive human plasma samples (AMA-REF and RR-REF), identified as potential reference materials based on preliminary data, were further validated by multiple laboratories using HEp-2-IFA, immunoprecipitation (IP), western blotting, IP-western, line immunoassay (LIA), addressable laser bead immunoassay (ALBIA) and enzyme-linked immunosorbent assay (ELISA).

Results:

AMA-REF showed a strong positive cytoplasmic reticular/AMA staining pattern by HEp-2-IFA to ≥1:1280 dilution and positive signal on rodent kidney/stomach/liver tissue. AMA-REF reacted with E2/E3, E3BP, E1α and E1β subunits of the pyruvate dehydrogenase complex by IP and western blotting and was positive for AMA antigens by LIA, ALBIA and ELISA. RR-REF showed a strong positive rods and rings staining pattern by HEp-2-IFA to ≥1:1280 dilution. RR-REF reacted with inosine monophosphate dehydrogenase by IP, IP-western and ALBIA. RR-REF also produced a nuclear homogenous staining pattern by HEp-2-IFA, immunoprecipitated proteins associated with anti-U1RNP antibody and reacted weakly with histones, nucleosomes, Sm and nRNP/Sm by LIA.

Conclusions:

AMA-REF and RR-REF are useful reference materials for academic or commercial clinical laboratories to calibrate and establish internal reference standards for immunodiagnostic assays. AMA-REF and RR-REF are now available for free distribution to qualified laboratories through Plasma Services Group.

Keywords: anti-mitochondrial antibody; anti-rods/rings antibody; autoantibody; autoimmunity; hepatitis C; primary biliary cholangitis

References

  • 1.

    Meroni PL, Schur PH. ANA screening: an old test with new recommendations. Ann Rheum Dis 2010;69:1420–2.Web of ScienceCrossrefPubMedGoogle Scholar

  • 2.

    Berg PA, Klein R. Antimitochondrial antibodies in primary biliary cirrhosis and other disorders: definition and clinical relevance. Dig Dis 1992;10:85–101.CrossrefPubMedGoogle Scholar

  • 3.

    Berg PA, Klein R. Mitochondrial antigen/antibody systems in primary biliary cirrhosis: revisited. Liver 1995;15:281–92.PubMedGoogle Scholar

  • 4.

    Oertelt S, Rieger R, Selmi C, Invernizzi P, Ansari AA, Coppel RL, et al. A sensitive bead assay for antimitochondrial antibodies: chipping away at AMA-negative primary biliary cirrhosis. Hepatology 2007;45:659–65.Web of ScienceCrossrefPubMedGoogle Scholar

  • 5.

    EASL Clinical Practice Guidelines. The diagnosis and management of patients with primary biliary cholangitis. J Hepatol 2017;67:145–72.Web of SciencePubMedGoogle Scholar

  • 6.

    Shuai Z, Wang J, Badamagunta M, Choi J, Yang G, Zhang W, et al. The fingerprint of antimitochondrial antibodies and the etiology of primary biliary cholangitis. Hepatology 2017;65:1670–82.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 7.

    Bowlus CL, Gershwin ME. The diagnosis of primary biliary cirrhosis. Autoimmun Rev 2014;13:441–4.CrossrefWeb of ScienceGoogle Scholar

  • 8.

    Kaplan MM, Gershwin ME. Primary biliary cirrhosis. N Engl J Med 2005;353:1261–73.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 9.

    Bogdanos DP, Komorowski L. Disease-specific autoantibodies in primary biliary cirrhosis. Clin Chim Acta 2011;412:502–12.Web of ScienceCrossrefPubMedGoogle Scholar

  • 10.

    Agmon-Levin N, Shapira Y, Selmi C, Barzilai O, Ram M, Szyper-Kravitz M, et al. A comprehensive evaluation of serum autoantibodies in primary biliary cirrhosis. J Autoimmun 2010;34:55–8.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 11.

    Metcalf JV, Mitchison HC, Palmer JM, Jones DE, Bassendine MF, James OF. Natural history of early primary biliary cirrhosis. Lancet 1996;348:1399–402.CrossrefPubMedGoogle Scholar

  • 12.

    Carcamo WC, Satoh M, Kasahara H, Terada N, Hamazaki T, Chan JY, et al. Induction of cytoplasmic rods and rings structures by inhibition of the CTP and GTP synthetic pathway in mammalian cells. PLoS One 2011;6:e29690.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 13.

    Probst C, Radzimski C, Blocker IM, Teegen B, Bogdanos DP, Stocker W, et al. Development of a recombinant cell-based indirect immunofluorescence assay (RC-IFA) for the determination of autoantibodies against “rings and rods”-associated inosine-5’-monophosphate dehydrogenase 2 in viral hepatitis C. Clin Chim Acta 2013;418:91–6.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 14.

    Seelig HP, Appelhans H, Bauer O, Bluthner M, Hartung K, Schranz P, et al. Autoantibodies against inosine-5’-monophosphate dehydrogenase 2--characteristics and prevalence in patients with HCV-infection. Clin Lab 2011;57:753–65.PubMedGoogle Scholar

  • 15.

    Carcamo WC, Calise SJ, von Mühlen CA, Satoh M, Chan EK. Molecular cell biology and immunobiology of mammalian rod/ring structures. Int Rev Cell Mol Biol 2014;308:35–74.Web of SciencePubMedCrossrefGoogle Scholar

  • 16.

    Keppeke GD, Calise SJ, Chan EK, Andrade LE. Assembly of IMPDH2-based, CTPS-based, and mixed rod/ring structures is dependent on cell type and conditions of induction. J Genet Genom 2015;42:287–99.CrossrefGoogle Scholar

  • 17.

    Chang CC, Lin WC, Pai LM, Lee HS, Wu SC, Ding ST, et al. Cytoophidium assembly reflects upregulation of IMPDH activity. J Cell Sci 2015;128:3550–5.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 18.

    Covini G, Carcamo WC, Bredi E, von Mühlen CA, Colombo M, Chan EK. Cytoplasmic rods and rings autoantibodies developed during pegylated interferon and ribavirin therapy in patients with chronic hepatitis C. Antivir Ther 2012;17:805–11.PubMedWeb of ScienceGoogle Scholar

  • 19.

    Keppeke GD, Nunes E, Ferraz ML, Silva EA, Granato C, Chan EK, et al. Longitudinal study of a human drug-induced model of autoantibody to cytoplasmic rods/rings following HCV therapy with ribavirin and interferon-alpha. PLoS One 2012;7:e45392.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 20.

    Novembrino C, Aghemo A, Ferraris Fusarini C, Maiavacca R, Matinato C, Lunghi G, et al. Interferon-ribavirin therapy induces serum antibodies determining ‘rods and rings’ pattern in hepatitis C patients. J Viral Hepat 2014;21:944–9.PubMedCrossrefGoogle Scholar

  • 21.

    Stinton LM, Myers RP, Coffin CS, Fritzler MJ. Clinical associations and potential novel antigenic targets of autoantibodies directed against rods and rings in chronic hepatitis C infection. BMC Gastroenterol 2013;13:50.CrossrefWeb of SciencePubMedGoogle Scholar

  • 22.

    Calise SJ, Bizzaro N, Nguyen T, Bassetti D, Porcelli B, Almi P, et al. Anti-rods/rings autoantibody seropositivity does not affect response to telaprevir treatment for chronic hepatitis C infection. Auto Immun Highlights 2016;7:15.PubMedCrossrefGoogle Scholar

  • 23.

    Climent J, Morandeira F, Castellote J, Xiol J, Niubo J, Calatayud L, et al. Clinical correlates of the “rods and rings” antinuclear antibody pattern. Autoimmunity 2016;49:102–8.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 24.

    Calise SJ, Carcamo WC, Ceribelli A, Dominguez Y, Satoh M, Chan EK. Antibodies to rods and rings. In: Meroni PL, Gershwin ME, editors. Autoantibodies, 3rd ed. San Diego, CA: Elsevier, 2014:161–8.Google Scholar

  • 25.

    Feld JJ, Jacobson IM, Sulkowski MS, Poordad F, Tatsch F, Pawlotsky JM. Ribavirin revisited in the era of direct-acting antiviral therapy for hepatitis C virus infection. Liver Int 2017;37:5–18.CrossrefWeb of SciencePubMedGoogle Scholar

  • 26.

    Falade-Nwulia O, Suarez-Cuervo C, Nelson DR, Fried MW, Segal JB, Sulkowski MS. Oral direct-acting agent therapy for hepatitis C virus infection: a systematic review. Ann Intern Med 2017;166:637–48.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 27.

    Nelson DR, Peter J. Hepatitis C virus: how to provide the best treatment with what I have. Liver Int 2016;36(Suppl 1):58–61.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 28.

    Buchner C, Bryant C, Eslami A, Lakos G. Anti-nuclear antibody screening using HEp-2 cells. J Vis Exp 2014;88:e51211.Web of ScienceGoogle Scholar

  • 29.

    Chan EK, Damoiseaux J, Carballo OG, Conrad K, de Melo Cruvinel W, Francescantonio PL, et al. Report of the first international consensus on standardized nomenclature of antinuclear antibody HEp-2 cell patterns 2014–2015. Front Immunol 2015;6:412.Web of SciencePubMedGoogle Scholar

  • 30.

    Satoh M, Reeves WH. Induction of lupus-associated autoantibodies in BALB/c mice by intraperitoneal injection of pristane. J Exp Med 1994;180:2341–6.PubMedCrossrefGoogle Scholar

  • 31.

    Satoh M, Langdon JJ, Hamilton KJ, Richards HB, Panka D, Eisenberg RA, et al. Distinctive immune response patterns of human and murine autoimmune sera to U1 small nuclear ribonucleoprotein C protein. J Clin Invest 1996;97:2619–26.CrossrefPubMedGoogle Scholar

  • 32.

    Ceribelli A, Isailovic N, De Santis M, Generali E, Satoh M, Selmi C. Detection of anti-mitochondrial antibodies by immunoprecipitation in patients with systemic sclerosis. J Immunol Methods 2017;452:1–5.Web of SciencePubMedGoogle Scholar

  • 33.

    Selmi C, Ceribelli A, Gershwin ME. Chapter 57. Antimitochondrial antibodies. In: Meroni PL, Gershwin ME, editors. Autoantibodies, 3rd ed. San Diego, CA: Elsevier, 2014:485–90.Google Scholar

  • 34.

    Yeaman SJ, Fussey SP, Danner DJ, James OF, Mutimer DJ, Bassendine MF. Primary biliary cirrhosis: identification of two major M2 mitochondrial autoantigens. Lancet 1988;1:1067–70.PubMedGoogle Scholar

  • 35.

    Fregeau DR, Roche TE, Davis PA, Coppel R, Gershwin ME. Primary biliary cirrhosis. Inhibition of pyruvate dehydrogenase complex activity by autoantibodies specific for E1 alpha, a non-lipoic acid containing mitochondrial enzyme. J Immunol 1990;144:1671–6.PubMedGoogle Scholar

  • 36.

    Calise SJ, Carcamo WC, Krueger C, Yin JD, Purich DL, Chan EK. Glutamine deprivation initiates reversible assembly of mammalian rods and rings. Cell Mol Life Sci 2014;71:2963–73.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 37.

    Calise SJ, Purich DL, Nguyen T, Saleem DA, Krueger C, Yin JD, et al. ‘Rod and ring’ formation from IMP dehydrogenase is regulated through the one-carbon metabolic pathway. J Cell Sci 2016;129:3042–52.CrossrefWeb of SciencePubMedGoogle Scholar

  • 38.

    Carcamo WC, Ceribelli A, Calise SJ, Krueger C, Liu C, Daves M, et al. Differential reactivity to IMPDH2 by anti-rods/rings autoantibodies and unresponsiveness to pegylated interferon-alpha/ribavirin therapy in US and Italian HCV patients. J Clin Immunol 2013;33:420–6.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 39.

    Satoh M, Richards HB, Hamilton KJ, Reeves WH. Human anti-nuclear ribonucleoprotein antigen autoimmune sera contain a novel subset of autoantibodies that stabilizes the molecular interaction of U1RNP-C protein with the Sm core proteins. J Immunol 1997;158:5017–25.Google Scholar

  • 40.

    Agmon-Levin N, Damoiseaux J, Kallenberg C, Sack U, Witte T, Herold M, et al. International recommendations for the assessment of autoantibodies to cellular antigens referred to as anti-nuclear antibodies. Ann Rheum Dis 2014;73:17–23.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 41.

    Meroni PL, Biggioggero M, Pierangeli SS, Sheldon J, Zegers I, Borghi MO. Standardization of autoantibody testing: a paradigm for serology in rheumatic diseases. Nat Rev Rheumatol 2014;10:35–43.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 42.

    Chan EK, Fritzler MJ, Wiik A, Andrade LE, Reeves WH, Tincani A, et al. AutoAbSC.Org – Autoantibody Standardization Committee in 2006. Autoimmun Rev 2007;6:577–80.Web of ScienceCrossrefPubMedGoogle Scholar

  • 43.

    Shoenfeld Y, Cervera R, Haass M, Kallenberg C, Khamashta M, Meroni P, et al. EASI – The European Autoimmunity Standardisation Initiative: a new initiative that can contribute to agreed diagnostic models of diagnosing autoimmune disorders throughout Europe. Ann N Y Acad Sci 2007;1109: 138–44.CrossrefWeb of ScienceGoogle Scholar

  • 44.

    Muratori P, Efe C, Muratori L, Ozaslan E, Schiano T, Yoshida EM, et al. Clinical implications of antimitochondrial antibody seropositivity in autoimmune hepatitis: a multicentre study. Eur J Gastroenterol Hepatol 2017;29:777–80.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 45.

    Zheng B, Vincent C, Fritzler MJ, Senecal JL, Koenig M, Joyal F. Prevalence of systemic sclerosis in primary biliary cholangitis using the new ACR/EULAR classification criteria. J Rheumatol 2017;44:33–9.CrossrefPubMedGoogle Scholar

  • 46.

    Dellavance A, Cancado EL, Abrantes-Lemos CP, Harriz M, Marvulle V, Andrade LE. Humoral autoimmune response heterogeneity in the spectrum of primary biliary cirrhosis. Hepatol Int 2013;7:775–84.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 47.

    Carcamo WC, Yao B, Satoh M, Reeves W, Liu C, Covini G, et al., editors. Cytoplasmic rings/rods as autoimmune targets of emerging human autoantibodies associated with HCV virus infection and interferon therapy. 9th Dresden Symposium on Autoantibodies. Dresden, Germany: Pabst Science Publishers, 2009.Google Scholar

  • 48.

    Calise SJ, Keppeke GD, Andrade LE, Chan EK. Anti-rods/rings: a human model of drug-induced autoantibody generation. Front Immunol 2015;6:41.PubMedWeb of ScienceGoogle Scholar

  • 49.

    Keppeke GD, Calise SJ, Chan EK, Andrade LE. Anti-rods/rings autoantibody generation in hepatitis C patients during interferon-alpha/ribavirin therapy. World J Gastroenterol 2016;22:1966–74.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 50.

    Keppeke GD, Prado MS, Nunes E, Perazzio SF, Rodrigues SH, Ferraz ML, et al. Differential capacity of therapeutic drugs to induce rods/rings structures in vitro and in vivo and generation of anti-rods/rings autoantibodies. Clin Immunol 2016;173:149–56.CrossrefWeb of SciencePubMedGoogle Scholar

About the article

Corresponding author: Professor Edward K.L. Chan, Department of Oral Biology, University of Florida, 1395 Center Drive, Gainesville, FL 32610-0424, USA, Phone: (+1) 352-273-8849; Fax: (+1) 352-273-8829

aThe IUIS Autoantibody Standardization Committee: www.AutoAb.org; echan@ufl.edu


Received: 2017-12-10

Accepted: 2018-01-24

Published Online: 2018-02-26

Published in Print: 2018-09-25


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: SJC is supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1315138 and was previously supported by the National Institute of Dental and Craniofacial Research of the National Institutes of Health under Award No. 2T90DE021990-06 while this work was performed. MS is supported by JSPS KAKENHI (Grants-in-Aid for Scientific Research) grant number 15K08790. MJF is a coinvestigator on the UCAN-CANDU project funded by the Canadian Institutes of Health Research. IGDLT receives support from the Mexican National Research System (SNI) from Conacyt (National Council of Science and Technology). CS is supported by the Italian Ministry of Foreign Affairs (PGR00807) and receives research funding from AESKU.Diagnostics GmbH and Menarini Diagnostics (Florence, Italy). The IUIS Autoantibody Standardization Committee has received unrestricted grants from Bio-Rad, Inova Diagnostics and Euroimmun. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation or the National Institutes of Health.

Employment or leadership: None declared.

Honorarium: LECA has received speaking honoraria from Inova Diagnostics and Werfen International (Barcelona, Spain). MJF has received speaking honoraria from Inova Diagnostics, Werfen International, Amgen Canada (Mississauga, ON, Canada) and Alexion Pharmaceuticals (New Haven, CT, USA). CS has received speaking honoraria from AESKU.Diagnostics GmbH, Menarini Diagnostics and Grifols (Barcelona, Spain). AC and EKLC have also received speaking honoraria from Grifols.

Competing interests: MJF was and/or continues to be a consultant to Inova Diagnostics, Werfen International, Alexion Pharmaceuticals and Bio-Rad. CS is a consultant for AESKU.Diagnostics GmbH and Grifols. The funding organizations played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.


Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), Volume 56, Issue 10, Pages 1789–1798, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/cclm-2017-1152.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Benedetta Terziroli Beretta-Piccoli, Giorgina Mieli-Vergani, Diego Vergani, John M. Vierling, David Adams, Gianfranco Alpini, Jesus M. Banales, Ulrich Beuers, Einar Björnsson, Christopher Bowlus, Marco Carbone, Olivier Chazouillères, George Dalekos, Andrea De Gottardi, Kenichi Harada, Gideon Hirschfield, Pietro Invernizzi, David Jones, Edward Krawitt, Antonio Lanzavecchia, Zhe-Xiong Lian, Xiong Ma, Michael Manns, Domenico Mavilio, Eamon MM. Quigley, Federica Sallusto, Shinji Shimoda, Mario Strazzabosco, Mark Swain, Atsushi Tanaka, Michael Trauner, Koichi Tsuneyama, Ehud Zigmond, and M. Eric Gershwin
Journal of Autoimmunity, 2019, Page 102328
[2]
Mario Plebani, Maria Stella Graziani, and Jillian R. Tate
Clinical Chemistry and Laboratory Medicine (CCLM), 2018, Volume 56, Number 10, Page 1559
[3]
Joannes F.M. Jacobs and Xavier Bossuyt
Clinical Chemistry and Laboratory Medicine (CCLM), 2018, Volume 56, Number 10, Page 1563
[4]
Angela Ceribelli, Natasa Isailovic, Maria De Santis, and Carlo Selmi
Seminars in Arthritis and Rheumatism, 2018

Comments (0)

Please log in or register to comment.
Log in