Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Greaves, Ronda / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter


IMPACT FACTOR 2018: 3.638

CiteScore 2018: 2.44

SCImago Journal Rank (SJR) 2018: 1.191
Source Normalized Impact per Paper (SNIP) 2018: 1.205

Online
ISSN
1437-4331
See all formats and pricing
More options …
Volume 56, Issue 3

Issues

GFR estimation based on standardized creatinine and cystatin C: a European multicenter analysis in older adults

Jonas Björk
  • Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
  • Clinical Studies Sweden, Forum South, Skåne University Hospital, Lund, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sten Erik Bäck / Natalie Ebert / Marie Evans
  • Department of Clinical Sciences Intervention and Technology, Karolinska Institute and Karolinska University Hospital Huddinge, Stockholm, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anders Grubb / Magnus Hansson
  • Department of Clinical Chemistry, Karolinska Institute and Karolinska University Hospital Huddinge, Stockholm, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ian Jones / Edmund J. Lamb
  • Clinical Biochemistry, East Kent Hospitals University NHS Foundation Trust, Canterbury, Kent, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Peter Martus / Elke Schaeffner / Per Sjöström / Ulf Nyman
  • Corresponding author
  • Department of Translational Medicine, Division of Medical Radiology, Lund University, Malmö, Sweden, Phone: +46-733-842244
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-10-06 | DOI: https://doi.org/10.1515/cclm-2017-0563

Abstract

Background:

Although recommended by the Kidney Disease Improving Global Outcomes, the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPICR) creatinine equation was not targeted to estimate glomerular filtration rate (eGFR) among older adults. The Berlin Initiative Study (BIS1CR) equation was specifically developed in older adults, and the Lund-Malmö revised (LMRCR) and the Full Age Spectrum (FASCR) equations have shown promising results in older adults. Our aim was to validate these four creatinine equations, including addition of cystatin C in a large multicenter cohort of Europeans ≥70 years.

Methods:

A total of 3226 individuals (2638 with cystatin C) underwent GFR measurement (mGFR; median, 44 mL/min/1.73 m2) using plasma iohexol clearance. Bias, precision (interquartile range [IQR]), accuracy (percent of estimates ±30% of mGFR, P30), eGFR accuracy diagrams and probability diagrams to classify mGFR<45 mL/min/1.73 m2 were compared.

Results:

The overall results of BIS1CR/CKD-EPICR/FASCR/LMRCR were as follows: median bias, 1.7/3.6/0.6/−0.7 mL/min/1.73 m2; IQR, 11.6/12.3/11.1/10.5 mL/min/1.73 m2; and P30, 77.5%/76.4%/80.9%/83.5% (significantly higher for LMR, p<0.001). Substandard P30 (<75%) was noted for all equations at mGFR<30 mL/min/1.73 m2, and at body mass index values <20 and ≥35 kg/m2. LMRCR had the most stable performance across mGFR subgroups. Only LMRCR and FASCR had a relatively constant small bias across eGFR levels. Probability diagrams exhibited wide eGFR intervals for all equations where mGFR<45 could not be confidently ruled in or out. Adding cystatin C improved P30 accuracy to 85.7/86.8/85.7/88.7 for BIS2CR+CYS/CKD-EPICR+CYS/FASCR+CYS/MEANLMR+CAPA.

Conclusions:

LMRCR and FASCR seem to be attractive alternatives to CKD-EPICR in estimating GFR by creatinine-based equations in older Europeans. Addition of cystatin C leads to important improvement in estimation performance.

This article offers supplementary material which is provided at the end of the article.

Keywords: chronic kidney disease; creatinine; cystatin C; glomerular filtration rate; kidney function tests; renal failure

References

  • 1.

    Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 2013;3:1–150.Google Scholar

  • 2.

    Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009;150:604–12.CrossrefWeb of SciencePubMedGoogle Scholar

  • 3.

    Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI, Greene T, et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med 2012;367:20–9.Web of ScienceCrossrefPubMedGoogle Scholar

  • 4.

    Björk J, Grubb A, Sterner G, Nyman U. Revised equations for estimating glomerular filtration rate based on the Lund-Malmö Study cohort. Scand J Clin Lab Invest 2011;71:232–9.PubMedCrossrefGoogle Scholar

  • 5.

    Björk J, Jones I, Nyman U, Sjöström P. Validation of the Lund-Malmö, Chronic Kidney Disease Epidemiology (CKD-EPI) and Modification of Diet in Renal Disease (MDRD) equations to estimate glomerular filtration rate in a large Swedish clinical population. Scand J Urol Nephrol 2012;46:212–22.CrossrefGoogle Scholar

  • 6.

    Nyman U, Grubb A, Larsson A, Hansson LO, Flodin M, Nordin G, et al. The revised Lund-Malmo GFR estimating equation outperforms MDRD and CKD-EPI across GFR, age and BMI intervals in a large Swedish population. Clin Chem Lab Med 2014;52:815–24.Web of ScienceGoogle Scholar

  • 7.

    Björk J, Grubb A, Larsson A, Hansson LO, Flodin M, Sterner G, et al. Accuracy of GFR estimating equations combining standardized cystatin C and creatinine assays: a cross-sectional study in Sweden. Clin Chem Lab Med 2015;53:403–14.PubMedWeb of ScienceGoogle Scholar

  • 8.

    Schaeffner ES, Ebert N, Delanaye P, Frei U, Gaedeke J, Jakob O, et al. Two novel equations to estimate kidney function in persons aged 70 years or older. Ann Intern Med 2012;157:471–81.Web of SciencePubMedCrossrefGoogle Scholar

  • 9.

    Fan L, Levey AS, Gudnason V, Eiriksdottir G, Andresdottir MB, Gudmundsdottir H, et al. Comparing GFR estimating equations using cystatin C and creatinine in elderly individuals. J Am Soc Nephrol 2015;26:1982–9. Erratum in: J Am Soc Nephrol 2016;27:2917.CrossrefWeb of SciencePubMedGoogle Scholar

  • 10.

    Pottel H, Hoste L, Dubourg L, Ebert N, Schaeffner E, Eriksen BO, et al. An estimated glomerular filtration rate equation for the full age spectrum. Nephrol Dial Transplant 2016;31:798–806.CrossrefWeb of SciencePubMedGoogle Scholar

  • 11.

    Pottel H, Delanaye P, Schaeffner E, Dubourg L, Eriksen BO, Melsom T, et al. Estimating glomerular filtration rate for the full age spectrum from serum creatinine and cystatin C. Nephrol Dial Transplant 2017;32:497–507.PubMedWeb of ScienceGoogle Scholar

  • 12.

    Kilbride HS, Stevens PE, Eaglestone G, Knight S, Carter JL, Delaney MP, et al. Accuracy of the MDRD (Modification of Diet in Renal Disease) study and CKD-EPI (CKD Epidemiology Collaboration) equations for estimation of GFR in the elderly. Am J Kidney Dis 2013;61:57–66.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 13.

    Grubb A, Horio M, Hansson LO, Björk J, Nyman U, Flodin M, et al. Generation of a new cystatin C-based estimating equation for glomerular filtration rate by use of 7 assays standardized to the international calibrator. Clin Chem 2014;60:974–86.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 14.

    Sundin PO, Sjostrom P, Jones I, Olsson LA, Udumyan R, Grubb A, et al. Measured glomerular filtration rate does not improve prediction of mortality by cystatin C and creatinine. Nephrol Dial Transplant 2017;32:663–70.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 15.

    DuBois D, DuBois E. A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med 1916;17:863–71.Google Scholar

  • 16.

    Grubb A, Blirup-Jensen S, Lindstrom V, Schmidt C, Althaus H, Zegers I. First certified reference material for cystatin C in human serum ERM-DA471/IFCC. Clin Chem Lab Med 2010;48:1619–21.PubMedWeb of ScienceGoogle Scholar

  • 17.

    Zegers I, Auclair G, Schimmel H, Emons H, Blirup-Jensen S, Schmidt C, et al. Certification of cystatin C in the human serum reference material ERM-DA471/IFFCC. European Commission, Joint Research Centre, Institute for Reference Materials and Measurements (IRMM). Publications Office of the European Union. Available at: http://publications.jrc.ec.europa.eu/repository/handle/JRC58953. Accessed: 27 Jun 2017.

  • 18.

    Stevens LA, Zhang Y, Schmid CH. Evaluating the performance of equations for estimating glomerular filtration rate. J Nephrol 2008;21:797–807.PubMedGoogle Scholar

  • 19.

    K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Part 5. Evaluation of laboratory measurements for clinical assessment of kidney disease. Guideline 4. Estimation of GFR. Am J Kidney Dis 2002;39:S76–92.Google Scholar

  • 20.

    Earley A, Miskulin D, Lamb EJ, Levey AS, Uhlig K. Estimating equations for glomerular filtration rate in the era of creatinine standardization: a systematic review. Ann Intern Med 2012;156:785–95.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 21.

    Efron B, Tibshirani RJ. An introduction to the bootstrap. New York: Chapman and Hall, 1993.Google Scholar

  • 22.

    Björk J, Grubb A, Sterner G, Bäck SE, Nyman U. Performance of GFR estimating equations stratified by measured or estimated GFR: implications for interpretation. Am J Kidney Dis 2015;66:1107–8.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 23.

    Björk J, Grubb A, Sterner G, Bäck SE, Nyman U. Accuracy diagrams: a novel way to illustrate uncertainty of estimated GFR. Scand J Clin Lab Invest 2017;77:199–204.Web of SciencePubMedCrossrefGoogle Scholar

  • 24.

    Rule AD, Kremers WK. What is the correct approach for comparing GFR by different methods across levels of GFR? Clin J Am Soc Nephrol 2016;11:1518–21.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 25.

    Björk J, Grubb A, Sterner G, Nyman U. A new tool for predicting the probability of chronic kidney disease from a specific value of estimated GFR. Scand J Clin Lab Invest 2010;70: 327–33.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 26.

    Björk J, Grubb A, Gudnason V, Indridason OS, Levey AS, Palsson R, et al. Comparison of GFR estimating equations derived from creatinine and cystatin C: validation in the AGES-Reykjavik elderly cohort. Nephrol Dial Transplant 2017.Google Scholar

  • 27.

    Evans M, van Stralen KJ, Schon S, Prutz KG, Stendahl M, Rippe B, et al. Glomerular filtration rate-estimating equations for patients with advanced chronic kidney disease. Nephrol Dial Transplant 2013;28:2518–26.CrossrefWeb of SciencePubMedGoogle Scholar

  • 28.

    Ebert N, Loesment A, Martus P, Jakob O, Gaedeke J, Kuhlmann M, et al. Iohexol plasma clearance measurement in older adults with chronic kidney disease-sampling time matters. Nephrol Dial Transplant 2015;30:1307–14.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 29.

    Pottel H, Hoste L, Yayo E, Delanaye P. Glomerular filtration rate in healthy living potential kidney donors: a meta-analysis supporting the construction of the full age spectrum equation. Nephron 2016;135:105–19.Web of SciencePubMedGoogle Scholar

  • 30.

    Leion F, Hegbrant J, den Bakker E, Jonsson M, Abrahamson M, Nyman U, et al. Estimating glomerular filtration rate (GFR) in children. The average between a cystatin C- and a creatinine-based equation improves estimation of GFR in both children and adults and enables diagnosing Shrunken Pore Syndrome. Scand J Clin Lab Invest 2017;77:338–44.CrossrefWeb of ScienceGoogle Scholar

  • 31.

    Segarra A, de la Torre J, Ramos N, Quiroz A, Garjau M, Torres I, et al. Assessing glomerular filtration rate in hospitalized patients: a comparison between CKD-EPI and four cystatin C-based equations. Clin J Am Soc Nephrol 2011;6:2411–20.CrossrefWeb of SciencePubMedGoogle Scholar

  • 32.

    Nyman U, Grubb A, Sterner G, Björk J. Different equations to combine creatinine and cystatin C to predict GFR. Arithmetic mean of existing equations performs as well as complex combinations. Scand J Clin Lab Invest 2009;69:619–27.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 33.

    Dardashti A, Nozohoor S, Grubb A, Bjursten H. Shrunken Pore Syndrome is associated with a sharp rise in mortality in patients undergoing elective coronary artery bypass grafting. Scand J Clin Lab Invest 2016;76:74–81.CrossrefWeb of SciencePubMedGoogle Scholar

  • 34.

    Grubb A, Lindstrom V, Jonsson M, Back SE, Ahlund T, Rippe B, et al. Reduction in glomerular pore size is not restricted to pregnant women. Evidence for a new syndrome: ‘shrunken pore syndrome’. Scand J Clin Lab Invest 2015;75:333–40.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 35.

    Purde MT, Nock S, Risch L, Medina Escobar P, Grebhardt C, Nydegger UE, et al. The cystatin C/creatinine ratio, a marker of glomerular filtration quality: associated factors, reference intervals, and prediction of morbidity and mortality in healthy seniors. Transl Res 2016;169:80–90, e1–2.Web of SciencePubMedCrossrefGoogle Scholar

  • 36.

    Delanaye P, Melsom T, Ebert N, Back SE, Mariat C, Cavalier E, et al. Iohexol plasma clearance for measuring glomerular filtration rate in clinical practice and research: a review. Part 2: why to measure glomerular filtration rate with iohexol? Clin Kidney J 2016;9:700–4.Web of SciencePubMedCrossrefGoogle Scholar

  • 37.

    Glassock RJ, Winearls C. An epidemic of chronic kidney disease: fact or fiction? Nephrol Dial Transplant 2008;23: 1117–21.Web of SciencePubMedGoogle Scholar

  • 38.

    Gansevoort RT, Correa-Rotter R, Hemmelgarn BR, Jafar TH, Heerspink HJ, Mann JF, et al. Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet 2013;382:339–52.Web of ScienceCrossrefPubMedGoogle Scholar

  • 39.

    Delanaye P, Ebert N, Melsom T, Gaspari F, Mariat C, Cavalier E, et al. Iohexol plasma clearance for measuring glomerular filtration rate in clinical practice and research: a review. Part 1: how to measure glomerular filtration rate with iohexol? Clin Kidney J 2016;9:682–99.Web of SciencePubMedCrossrefGoogle Scholar

  • 40.

    Odlind B, Hallgren R, Sohtell M, Lindstrom B. Is 125I iothalamate an ideal marker for glomerular filtration? Kidney Int 1985;27: 9–16.CrossrefPubMedGoogle Scholar

  • 41.

    Zurth C. Mechanism of renal excretion of various X-ray contrast materials in rabbits. Invest Radiol 1984;19:110–5.CrossrefPubMedGoogle Scholar

  • 42.

    Bird NJ, Peters C, Michell AR, Peters AM. Comparison of GFR measurements assessed from single versus multiple samples. Am J Kidney Dis 2009;54:278–88.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 43.

    Sterner G, Frennby B, Hultberg B, Almen T. Iohexol clearance for GFR-determination in renal failure–single or multiple plasma sampling? Nephrol Dial Transplant 1996;11:521–5.PubMedGoogle Scholar

  • 44.

    Sterner G, Frennby B, Mansson S, Nyman U, Van Westen D, Almen T. Determining ‘true’ glomerular filtration rate in healthy adults using infusion of inulin and comparing it with values obtained using other clearance techniques or prediction equations. Scand J Urol Nephrol 2008;42:278–85.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 45.

    Delanaye P, Cavalier E. Staging chronic kidney disease and estimating glomerular filtration rate: an opinion paper about the new international recommendations. Clin Chem Lab Med 2013;51:1911–7.Web of SciencePubMedGoogle Scholar

  • 46.

    Delanaye P, Cavalier E, Cristol JP, Delanghe JR. Calibration and precision of serum creatinine and plasma cystatin C measurement: impact on the estimation of glomerular filtration rate. J Nephrol 2014;25:467–75.Web of ScienceGoogle Scholar

  • 47.

    Eckfeldt JH, Karger AB, Miller WG, Rynders GP, Inker LA. Performance in measurement of serum cystatin C by laboratories participating in the College of American pathologists 2014 CYS survey. Arch Pathol Lab Med 2015;139:888–93.CrossrefPubMedGoogle Scholar

  • 48.

    Nordin G. Cystatin C-incremental improvement in measurement and understanding of results. Clin Chem 2017;63:802–3.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 49.

    Bargnoux AS, Pieroni L, Cristol JP, Kuster N, Delanaye P, Carlier MC, et al. Multicenter evaluation of cystatin C measurement after assay standardization. Clin Chem 2017;63:833–41.Web of ScienceCrossrefPubMedGoogle Scholar

About the article

Received: 2017-06-28

Accepted: 2017-08-17

Published Online: 2017-10-06

Published in Print: 2018-02-23


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: UN and JB receive reimbursement for letting GE Healthcare AB, Danderyd, Sweden, distribute the computer program OmniVis in radiology departments for GFR estimation based on various creatinine- and cystatin C-based equations. UN receives lecture fees from GE Healthcare AB, Danderyd, Sweden. None declared by the remaining authors (SEB, NE, ME, AG, MH, IJ, EJL, PM, ES and PS).

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.


Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), Volume 56, Issue 3, Pages 422–435, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/cclm-2017-0563.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Pierre Delanaye, Kitty J. Jager, Arend Bökenkamp, Anders Christensson, Laurence Dubourg, Bjørn Odvar Eriksen, François Gaillard, Giovanni Gambaro, Markus van der Giet, Richard J. Glassock, Olafur S. Indridason, Marco van Londen, Christophe Mariat, Toralf Melsom, Olivier Moranne, Gunnar Nordin, Runolfur Palsson, Hans Pottel, Andrew D. Rule, Elke Schaeffner, Maarten W. Taal, Christine White, Anders Grubb, and Jan A. J. G. van den Brand
Journal of the American Society of Nephrology, 2019, Page ASN.2019030238
[4]
Luciano da Silva Selistre, Dener L. Rech, Vandréa de Souza, Jean Iwaz, Sandrine Lemoine, and Laurence Dubourg
JAMA Internal Medicine, 2019, Volume 179, Number 6, Page 796
[5]
Justine B. Bukabau, Eric Yayo, Appolinaire Gnionsahé, Dagui Monnet, Hans Pottel, Etienne Cavalier, Aliocha Nkodila, Jean Robert R. Makulo, Vieux M. Mokoli, François B. Lepira, Nazaire M. Nseka, Jean-Marie Krzesinski, Ernest K. Sumaili, and Pierre Delanaye
Kidney International, 2019, Volume 95, Number 5, Page 1181
[6]
Lena Pelander, Jens Häggström, Anders Larsson, Harriet Syme, Jonathan Elliott, Reidun Heiene, and Ingrid Ljungvall
Journal of Veterinary Internal Medicine, 2019, Volume 33, Number 2, Page 630
[7]
Amanda Veiga Cheuiche, Marina Queiroz, André Luis Ferreira Azeredo-da-Silva, and Sandra Pinho Silveiro
Scientific Reports, 2019, Volume 9, Number 1
[8]
Jonas Björk, Ulf Nyman, Ulla Berg, Pierre Delanaye, Laurence Dubourg, Karolien Goffin, Anders Grubb, Magnus Hansson, Karin Littmann, Kajsa Åsling-Monemi, Arend Bökenkamp, and Hans Pottel
Pediatric Nephrology, 2019, Volume 34, Number 6, Page 1087
[9]
Junyu Liang, Guanfeng Lin, Jianwei Tian, Jiejing Chen, Rongliang Liang, Zhenhua Chen, Qiaoting Deng, Zhining Dong, Tiancai Liu, and Yingsong Wu
Clinica Chimica Acta, 2019, Volume 490, Page 55
[10]
Ulf Nyman, Joanna Ahlkvist, Peter Aspelin, Torkel Brismar, Anders Frid, Mikael Hellström, Per Liss, Gunnar Sterner, and Peter Leander
European Radiology, 2018
[11]
Yoann Bataille, Olivier Costerousse, Olivier F. Bertrand, Olivier Moranne, Hans Pottel, Pierre Delanaye, and Emmanuel A. Burdmann
PLOS ONE, 2018, Volume 13, Number 7, Page e0199773
[12]
Pierre Delanaye
Néphrologie & Thérapeutique, 2018, Volume 14, Page S59
[13]
Kristian Heldal, Karsten Midtvedt, Anders Hartmann, Anna Varberg Reisaeter, Torbjørn F. Heldal, Stein Bergan, Cathrin L. Salvador, and Anders Åsberg
Transplant International, 2018
[15]
Jonas Björk, Sten-Erik Bäck, Gunnar Nordin, and Ulf Nyman
American Journal of Kidney Diseases, 2017

Comments (0)

Please log in or register to comment.
Log in