Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter / Tate, Jillian R.

12 Issues per year


IMPACT FACTOR 2017: 3.556

CiteScore 2017: 2.34

SCImago Journal Rank (SJR) 2017: 1.114
Source Normalized Impact per Paper (SNIP) 2017: 1.188

Online
ISSN
1437-4331
See all formats and pricing
More options …
Volume 56, Issue 7

Issues

Higher D-lactate levels are associated with higher prevalence of small dense low-density lipoprotein in obese adolescents

Reyna Rodríguez-Mortera
  • Department of Medical Science, University of Guanajuato, Guanajuato, Mexico
  • Glycation, Oxidation and Disease Laboratory, Department of Research, College of Osteopathic Medicine, Touro University, Vallejo, CA, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Claudia Luevano-Contreras / Sergio Solorio-Meza / Russell Caccavello
  • Glycation, Oxidation and Disease Laboratory, Department of Research, College of Osteopathic Medicine, Touro University, Vallejo, CA, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yasmin Bains
  • Glycation, Oxidation and Disease Laboratory, Department of Research, College of Osteopathic Medicine, Touro University, Vallejo, CA, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ma Eugenia Garay-Sevilla / Alejandro Gugliucci
  • Corresponding author
  • Glycation, Oxidation and Disease Laboratory, Department of Research, College of Osteopathic Medicine, Touro University, Vallejo, CA, USA
  • Touro University-California, 1310 Club Drive, 94592, Vallejo, CA, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-02-15 | DOI: https://doi.org/10.1515/cclm-2017-0733

Abstract

Background:

Childhood obesity is associated with insulin resistance (IR), increased levels of small dense low-density lipoprotein (sd-LDL) as well as with augmented hepatic de novo lipogenesis, which implies increased triose phosphate fluxes that may lead to increased methylglyoxal (MG) and its catabolic end product D-lactate. We hypothesized that obese adolescents have increased D-lactate serum levels associated with high incidence of sd-LDL.

Methods:

This is a cross-sectional study where the anthropometric characteristics, atherogenic dyslipidemia complex, sd-LDL (Lipoprint, Quantimetrix) and D-lactate (kinetic enzymatic analysis) were explored in 30 lean vs. 30 obese adolescents (16 females and 14 males per group) without metabolic syndrome (MetS). Endothelial function by flow-mediated dilation (FMD, by ultrasound) and arterial lesion by carotid intima media thickness (CIMT, by ultrasound) were also measured.

Results:

The mean age of participants was 16.8 ± 1.4 years. Obese adolescents had a body mass index of 32.7 ± 3.8 vs. 21.8 ± 2.1 in lean participants. The obesity group showed higher D-lactate levels: 6.2 ± 3.0 vs. 4.5 ± 2.5 μmol/L, higher levels of insulin: 15 (9.6–23.5) vs. 7.9 (6.5–10.5) μIU/mL; triglyceride (TG): 1.46 (1.1–1.8) vs. 0.84 (0.6–1.2) mmol/L; non-high-density lipoprotein-cholesterol (NON-HDL-C): 2.8 ± 0.9 vs. 2.3 ± 0.7 mmol/L; total cholesterol (TC)/HDL-C) index: 2.9 ± 0.7 vs. 2.4 ± 0.5; TG/HDL-C index: 2.2 (1.5–2.8) vs. 1.1 (0.8–1.8); %LDL-3: 4.2 ± 4.07 vs. 1.9 ± 2.7; smaller LDL size: 270.6 ± 3 vs. 272.2 ± 1.1 Å. D-lactate correlated positively with LDL-2: r = 0.44 and LDL-3 (sd-LDL): r = 0.49 and negatively with large LDL-1: r = −0.48 and LDL size: r = −0.46; (p<0.05, p<0.01, p<0.001 and p<0.0001, respectively). Obese adolescents showed higher CIMT: 0.51 ± 0.08 vs. 0.46 ± 0.08 mm and lower FMD: 20.3% ± 6.7% vs. 26.0% ± 9.3%.

Conclusions:

Obese adolescents display subclinical signs of IR and endothelial dysfunction. Higher serum sd-LDL levels correlated positively with D-lactate levels. These findings suggest an association between atherogenic dyslipoproteinemia and whole body MG fluxes already detectable in apparently healthy obese adolescents.

Keywords: atherosclerosis; carotid intima media thickness (CIMT); D-lactate; flow-mediated dilation (FMD); insulin-resistance; LDL subclasses; metabolic syndrome; methylglyoxal; obesity

References

  • 1.

    Alawan A. Global status report on noncommunicable diseases. World Health Organization (WHO). Geneva Switzerland, 2011.Google Scholar

  • 2.

    Gutiérrez JP, Rivera-Dommarco J, Shamah-Levy T, Villalpando-Hernández S, Franco A, Cuevas-Nasu L, et al. Encuesta Nacional de Salud y Nutrición 2012. Resultados Nacionales. Cuernavaca, México: Instituto Nacional de Salud Pública (MX), 2012. https://ensanut.insp.mx/informes/ENSANUT2012ResultadosNacionales.pdf.

  • 3.

    Kohen-Avramoglu R, Theriault A, Adeli K. Emergence of the metabolic syndrome in childhood: an epidemiological overview and mechanistic link to dyslipidemia. Clin Biochem 2003;36:413–20.CrossrefPubMedGoogle Scholar

  • 4.

    Jago R, Harrell JS, McMurray RG, Edelstein S, El Ghormli L, Bassin S. Prevalence of abnormal lipid and blood pressure values among an ethnically diverse population of eighth-grade adolescents and screening implications. Pediatrics 2006;117:2065–73.PubMedCrossrefGoogle Scholar

  • 5.

    Gidding SS. Cardiovascular risk factors in adolescents. Curr Treat Options Cardiovasc Med 2006;8:269–75.CrossrefPubMedGoogle Scholar

  • 6.

    Goran MI, Ball GD, Cruz ML. Obesity and risk of type 2 diabetes and cardiovascular disease in children and adolescents. J Clin Endocrinol Metab 2003;88:1417–27.CrossrefPubMedGoogle Scholar

  • 7.

    Manco M, Bottazzo G, DeVito R, Marcellini M, Mingrone G, Nobili V. Nonalcoholic fatty liver disease in children. J Am Coll Nutr 2008;27:667–76.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 8.

    Doyon A, Kracht D, Bayazit AK, Deveci M, Duzova A, Krmar RT, et al. Carotid artery intima-media thickness and distensibility in children and adolescents: reference values and role of body dimensions. Hypertension 2013;62:550–6.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 9.

    Urbina EM, Williams RV, Alpert BS, Collins RT, Daniels SR, Hayman L, et al. Noninvasive assessment of subclinical atherosclerosis in children and adolescents: recommendations for standard assessment for clinical research: a scientific statement from the American Heart Association. Hypertension 2009;54:919–50.Web of SciencePubMedCrossrefGoogle Scholar

  • 10.

    Jourdan C, Wühl E, Litwin M, Fahr K, Trelewicz J, Jobs K, et al. Normative values for intima-media thickness and distensibility of large arteries in healthy adolescents. J Hypertens 2005;23:1707–15.CrossrefPubMedGoogle Scholar

  • 11.

    Madhu K, Manjunath C, Rawal J, Irani P. Atherogenic dyslipidemia. Indian J Endocrinol Metab 2013;17:969.PubMedCrossrefGoogle Scholar

  • 12.

    Armiliato GN. High-fructose intake in obesity-related nonalcoholic fatty liver disease. J Gastrointest Dig Syst 2015;5:281–7.Google Scholar

  • 13.

    Schwarz JM, Noworolski SM, Wen MJ, Dyachenko A, Prior JL, Weinberg ME, et al. Effect of a high-fructose weight-maintaining diet on lipogenesis and liver fat. J Clin Endocrinol Metab 2015;100:2434–42.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 14.

    Thornalley PJ. Glyoxalase I – structure, function and a critical role in the enzymatic defense against glycation. Biochem Soc Trans 2003;31:1343–8.CrossrefGoogle Scholar

  • 15.

    Masania J, Malczewska-Malec M, Razny U, Goralska J, Zdzienicka A, Kiec-Wilk B, et al. Dicarbonyl stress in clinical obesity. Glycoconj J 2016;33:581–9.PubMedCrossrefGoogle Scholar

  • 16.

    Charakida M, Masi S, Lüscher TF, Kastelein JJ, Deanfield JE. Assessment of atherosclerosis: the role of flow-mediated dilatation. Eur Heart J 2010;31:2854–61.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 17.

    Głowińska-Olszewska B, Tołwińska J, Łuczyński W, Konstantynowicz J, Bossowski A. Cardiovascular risk in nonobese hypertensive adolescents: a study based on plasma biomarkers and ultrasonographic assessment of early atherosclerosis. J Hum Hypertens 2013;27:191–6.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 18.

    Bruno RM, Bianchini E, Faita F, Taddei S, Ghiadoni L. Intima media thickness, pulse wave velocity, and flow mediated dilation. Cardiovasc Ultrasound 2014;12:34.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 19.

    Litwin M, Niemirska A. Intima-media thickness measurements in children with cardiovascular risk factors. Pediatr Nephrol 2009;24:707–19.Web of SciencePubMedCrossrefGoogle Scholar

  • 20.

    CDC. National Health and Nutrition. Examination survey. Antrophometry procedures manual. Available from: http://www.cdc.gov/nchs/data/nhanes/nhanes_07_08/manual_an.pdf.

  • 21.

    The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. National high blood pressure education program working group on high blood pressure in children and adolescents. Pediatrics 2004;114(2 Suppl 4th):555–76.Google Scholar

  • 22.

    Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. Br Med J 2000;320:1240–3.CrossrefGoogle Scholar

  • 23.

    Amato MC, Giordano C, Galia M, Criscimanna A, Vitabile S, Midiri M, et al. Visceral Adiposity Index: a reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care 2010;33:920–2.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 24.

    Arrebola-Moreno AL, Laclaustra M, Kaski JC. Noninvasive assessment of endothelial function in clinical practice. Rev Esp Cardiol 2012;65:80–90.Web of ScienceGoogle Scholar

  • 25.

    Montalcini T, Romeo S, Fava A, Pujia A. Carotid intima-media thickness: a target or a marker? Am J Ther 2014;21:535–9.Web of ScienceCrossrefGoogle Scholar

  • 26.

    Hoefner DM, Hodel SD, O’Brien JF, Branum EL, Sun D, Meissner I, et al. Development of a rapid, quantitative method for LDL subfractionation with use of the quantimetrix lipoprint LDL system. Clin Chem 2001;47:266–74.PubMedGoogle Scholar

  • 27.

    Gugliucci A, Lustig RH, Caccavello R, Erkin-Cakmak A, Noworolski SM, Tai VW, et al. Short-term isocaloric fructose restriction lowers apoC-III levels and yields less atherogenic lipoprotein profiles in children with obesity and metabolic syndrome. Atherosclerosis 2016;253:171–7.Web of ScienceCrossrefPubMedGoogle Scholar

  • 28.

    McLellan AC, Phillips SA, Thornalley PJ. Fluorimetric assay of d-lactate. Anal Biochem 1992;206:12–6.CrossrefPubMedGoogle Scholar

  • 29.

    Simşek E, Balta H, Balta ZD. Childhood obesity-related cardiovascular risk factors and carotid intima-media thickness. Turk J Pediatr 2010;52:601–11.Google Scholar

  • 30.

    Mittelman SD, Gilsanz P, Mo AO, Wood J, Dorey F, Gilsanz V. Adiposity predicts carotid intima-media thickness in healthy children and adolescents. J Pediatr 2010;156:592–7.CrossrefPubMedGoogle Scholar

  • 31.

    Amato MC, Giordano C. Visceral adiposity index: an indicator of adipose tissue dysfunction. Int J Endocrinol 2014;2014:1–7.Web of ScienceGoogle Scholar

  • 32.

    Rodríguez-Morán M, Guerrero-Romero F, Aradillas-García C, Bermudez-Peña C, Simental-Mendia LE, Vargas Morales JM, et al. Atherogenic indices and prehypertension in obese and non-obese children. Diabetes Vasc Dis Res 2013;10:17–24.Web of ScienceCrossrefGoogle Scholar

  • 33.

    Mansour M, Nassef YE, Shady MA, Aziz AA, Malt HA. Metabolic syndrome and cardiovascular risk factors in obese adolescent. Open access Maced J Med Sci 2016;4:118–21.CrossrefPubMedGoogle Scholar

  • 34.

    Garaiova I, Muchová J, Nagyová Z, Mišľanová C, Oravec S, Dukát A, et al. Effect of a plant sterol, fish oil and B vitamin combination on cardiovascular risk factors in hypercholesterolemic children and adolescents: a pilot study. Nutr J 2013;12:1–8.Web of ScienceGoogle Scholar

  • 35.

    Miyashita M, Okada T, Kuromori Y, Harada K. LDL particle size, fat distribution and insulin resistance in obese children. Eur J Clin Nutr 2006;60:416–20.CrossrefPubMedGoogle Scholar

  • 36.

    Bekhet OH, Zeljkovic A, Vekic J, Paripovic D, Janac J, Joksic J, et al. Hypertension, lipoprotein subclasses and lipid transfer proteins in obese children and adolescents. Scand J Clin Lab Invest 2016;5513(July):1–7.Web of ScienceGoogle Scholar

  • 37.

    Stan S, Levy E, Delvin EE, Hanley JA, Lamarche B, O’Loughlin J, et al. Distribution of LDL particle size in a population-based sample of children and adolescents and relationship with other cardiovascular risk factors. Clin Chem 2005;51:1192–200.CrossrefGoogle Scholar

  • 38.

    Taşcılar ME, Özgen T, Cihan M, Abacı A, Yeşilkaya E, Eker I, et al. The effect of insulin resistance and obesity on low-density lipoprotein particle size in children. J Clin Res Pediatr Endocrinol 2010;2:63–6. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3005671&tool=pmcentrez&rendertype=abstract.PubMedCrossref

  • 39.

    Muniyappa R, Srinivas PR. Dicarbonyl stress and atherosclerosis: is it all RAGE? Diabetes 2014;63:3587–9.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 40.

    Kimber L. Stanhope J-M, Havel PJ. Adverse metabolic effects of dietary fructose: results from recent epidemiological, clinical, and mechanistic studies. Nano 2008;6:2166–71.Google Scholar

  • 41.

    Lustig RH, Mulligan K, Noworolski SM, Tai VW, Wen MJ, Ayca EC, et al. Isocaloric fructose restriction and metabolic improvement in children with obesity and metabolic syndrome. Obesity (Silver Spring, Md) 2016;24:453–60.PubMedCrossrefGoogle Scholar

  • 42.

    Lim JS, Mietus-Snyder M, Valente A, Schwarz J-M, Lustig RH. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat Rev Gastroenterol Hepatol 2010;7:251–64.Web of ScienceCrossrefPubMedGoogle Scholar

  • 43.

    Głowińska-Olszewska B, Tołwińska J, Urban M. Relationship between endothelial dysfunction, carotid artery intima media thickness and circulating markers of vascular inflammation in obese hypertensive children and adolescents. J Pediatr Endocrinol Metab 2007;20:1125–36.PubMedGoogle Scholar

  • 44.

    Giannini C, de Giorgis T, Scarinci A, Cataldo I, Marcovecchio ML, Chiarelli F, et al. Increased carotid intima-media thickness in pre-pubertal children with constitutional leanness and severe obesity: the speculative role of insulin sensitivity, oxidant status, and chronic inflammation. Eur J Endocrinol 2009;161:73–80.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 45.

    Cote AT, Harris KC, Panagiotopoulos C, Sandor GG, Devlin AM. Childhood obesity and cardiovascular dysfunction. J Am Coll Cardiol 2013;62:1309–19.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 46.

    Koopman LP, McCrindle BW, Slorach C, Chahal N, Hui W, Sarkola T, et al. Interaction between myocardial and vascular changes in obese children: a pilot study. J Am Soc Echocardiogr [Internet] 2012;25:401–10.e1. Available from: http://dx.doi.org/10.1016/j.echo.2011.12.018.Crossref

  • 47.

    Tryggestad JB, Thompson DM, Copeland KC, Short KR. Obese children have higher arterial elasticity without a difference in endothelial function: the role of body composition. Obesity (Silver Spring) 2012;20:165–71.PubMedCrossrefGoogle Scholar

About the article

Corresponding author: Alejandro Gugliucci, MD, PhD, Professor and Associate Dean of Research, Touro University-California, 1310 Club Drive, 94592, Vallejo, CA, USA; and Glycation, Oxidation and Disease Laboratory, Department of Research, College of Osteopathic Medicine, Touro University, Vallejo, CA, USA, Phone: +1 707 638 5237, Fax: +1 707 638 5998


Received: 2017-08-17

Accepted: 2018-01-10

Published Online: 2018-02-15

Published in Print: 2018-06-27


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: Grant DAIP University of Guanajuato (Project 011/2015) and Touro University-California (069).

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.


Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), Volume 56, Issue 7, Pages 1100–1108, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/cclm-2017-0733.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in