Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Greaves, Ronda / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter

IMPACT FACTOR 2018: 3.638

CiteScore 2018: 2.44

SCImago Journal Rank (SJR) 2018: 1.191
Source Normalized Impact per Paper (SNIP) 2018: 1.205

See all formats and pricing
More options …
Volume 56, Issue 7


Laboratory hemostasis: from biology to the bench

Giuseppe LippiORCID iD: http://orcid.org/0000-0001-9523-9054 / Emmanuel J. Favaloro
  • Department of Clinical and Laboratory Haematology, Sydney Centres for Thrombosis and Haemostasis, Institute of Clinical Pathology and Medical Research and Westmead Hospital, Westmead, NSW, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-02-19 | DOI: https://doi.org/10.1515/cclm-2017-1205


Physiological hemostasis is an intricate biological system, where procoagulant and anticoagulant forces interplay and preserves blood fluidity when blood vessels are intact, or trigger clot formation to prevent excessive bleeding when blood vessels are injured. The modern model of hemostasis is divided into two principal phases. The first, defined as primary hemostasis, involves the platelet-vessel interplay, whilst the second, defined as secondary hemostasis, mainly involves coagulation factors, damaged cells and platelet surfaces, where the so-called coagulation cascade rapidly develops. The activation and amplification of the coagulation cascade is finely modulated by the activity of several physiological inhibitors. Once bleeding has been efficiently stopped by blood clot formation, dissolution of the thrombus is essential to restore vessel permeability. This process, known as fibrinolysis, also develops through coordinate action of a vast array of proteins and enzymes. An accurate diagnosis of hemostasis disturbance entails a multifaceted approach, encompassing family and personal history of hemostatic disorders, accurate collection of clinical signs and symptoms, integrated with laboratory hemostasis testing. Regarding laboratory testing, a reasonable approach entails classifying hemostasis testing according to cost, complexity and available clinical information. Laboratory workout may hence initiate with some rapid and inexpensive “screening” tests, characterized by high negative predictive value, then followed by second- or third-line analyses, specifically aimed to clarify the nature and severity of bleeding or thrombotic phenotype. This article aims to provide a general overview of the hemostatic process, and to provide some general suggestions to optimally facilitate laboratory hemostasis testing.

Keywords: bleeding; blood coagulation; laboratory hemostasis; platelets; thrombosis


  • 1.

    Lippi G, Favaloro EJ. Laboratory hemostasis: milestones in clinical chemistry and laboratory medicine. Clin Chem Lab Med 2013;51:91–7.PubMedGoogle Scholar

  • 2.

    Bonar RA, Lippi G, Favaloro EJ. Overview of hemostasis and thrombosis and contribution of laboratory testing to diagnosis and management of hemostasis and thrombosis disorders. Methods Mol Biol 2017;1646:3–27.CrossrefPubMedGoogle Scholar

  • 3.

    Gale AJ. Continuing education course #2: current understanding of hemostasis. Toxicol Pathol 2011;39:273–80.CrossrefGoogle Scholar

  • 4.

    Arbelaez A, Niemann J, Freney R, Othman M, Emsley J, Mohammed S, et al. “Bleeding in the jungle”. Am J Hematol 2015;90:843–6.PubMedCrossrefGoogle Scholar

  • 5.

    Curnow J, Pasalic L, Favaloro EJ. Treatment of von Willebrand disease. Semin Thromb Hemost 2016;42:133–46.CrossrefPubMedGoogle Scholar

  • 6.

    Yau JW, Teoh H, Verma S. Endothelial cell control of thrombosis. BMC Cardiovasc Disord 2015;15:130.CrossrefPubMedGoogle Scholar

  • 7.

    Broos K, Feys HB, De Meyer SF, Vanhoorelbeke K, Deckmyn H. Platelets at work in primary hemostasis. Blood Rev 2011;25: 155–67.CrossrefPubMedGoogle Scholar

  • 8.

    Lippi G, Franchini M, Targher G. Arterial thrombus formation in cardiovascular disease. Nat Rev Cardiol 2011;8:502–12.CrossrefPubMedGoogle Scholar

  • 9.

    Versteeg HH, Heemskerk JW, Levi M, Reitsma PH. New fundamentals in hemostasis. Physiol Rev 2013;93:327–58.PubMedCrossrefGoogle Scholar

  • 10.

    Lippi G, Franchini M, Guidi GC. Diagnostic approach to inherited bleeding disorders. Clin Chem Lab Med 2007;45:2–12.PubMedGoogle Scholar

  • 11.

    McVey JH. The role of the tissue factor pathway in haemostasis and beyond. Curr Opin Hematol 2016;23:453–61.PubMedCrossrefGoogle Scholar

  • 12.

    Schroeder V, Kohler HP. Factor XIII: structure and function. Semin Thromb Hemost 2016;42:422–8.PubMedCrossrefGoogle Scholar

  • 13.

    Favaloro EJ. Optimizing the verification of mean normal prothrombin time (MNPT) and international sensitivity index (ISI) for accurate conversion of prothrombin time (PT) to international normalized ratio (INR). Methods Mol Biol 2017;1646:59–74.CrossrefPubMedGoogle Scholar

  • 14.

    Leiderman K, Chang WC, Ovanesov M, Fogelson AL. Synergy between tissue factor and exogenous factor XIa in initiating coagulation. Arterioscler Thromb Vasc Biol 2016;36:2334–45.PubMedCrossrefGoogle Scholar

  • 15.

    Mohammed BM, Matafonov A, Ivanov I, Sun MF, Cheng Q, Dickeson SK, et al. An update on factor XI structure and function. Thromb Res 2017;161:94–105.PubMedGoogle Scholar

  • 16.

    Smith SA, Travers RJ, Morrissey JH. How it all starts: Initiation of the clotting cascade. Crit Rev Biochem Mol Biol 2015;50: 326–36.CrossrefPubMedGoogle Scholar

  • 17.

    Kershaw G. Performance of activated partial thromboplastin time (APTT): determining reagent sensitivity to factor deficiencies, heparin, and lupus anticoagulants. Methods Mol Biol 2017;1646:75–83.CrossrefPubMedGoogle Scholar

  • 18.

    Danese E, Montagnana M, Lippi G. Factor XII in hemostasis and thrombosis: active player or (Innocent) bystander? Semin Thromb Hemost 2016;42:682–8.PubMedCrossrefGoogle Scholar

  • 19.

    Lippi G, Franchini M, Brazzarola P, Manzato F. Preoperative screening: the rationale of measuring APTT in risk assessment. Haematologica 2001;86:328.PubMedGoogle Scholar

  • 20.

    Undas A. Determination of fibrinogen and thrombin time (TT). Methods Mol Biol 2017;1646:105–10.PubMedCrossrefGoogle Scholar

  • 21.

    Undas A. How to assess fibrinogen levels and fibrin clot properties in clinical practice? Semin Thromb Hemost 2016;42:381–8.CrossrefPubMedGoogle Scholar

  • 22.

    Montagnana M, Lippi G, Danese E. An overview of thrombophilia and associated laboratory testing. Methods Mol Biol 2017;1646:113–35.PubMedCrossrefGoogle Scholar

  • 23.

    Quinsey NS, Greedy AL, Bottomley SP, Whisstock JC, Pike RN. Antithrombin: in control of coagulation. Int J Biochem Cell Biol 2004;36:386–9.CrossrefPubMedGoogle Scholar

  • 24.

    Marlar RA, Gausman JN. Assessment of hereditary thrombophilia: performance of protein C (PC) testing. Methods Mol Biol 2017;1646:145–51.CrossrefPubMedGoogle Scholar

  • 25.

    Marlar RA, Gausman JN. Assessment of hereditary thrombophilia: performance of protein S (PS) testing. Methods Mol Biol 2017;1646:153–60.CrossrefPubMedGoogle Scholar

  • 26.

    Mohammed S, Favaloro EJ. Laboratory testing for activated protein C resistance (APCR). Methods Mol Biol 2017;1646:137–43.CrossrefPubMedGoogle Scholar

  • 27.

    Wood JP, Ellery PE, Maroney SA, Mast AE. Biology of tissue factor pathway inhibitor. Blood 2014;123:2934–43.CrossrefPubMedGoogle Scholar

  • 28.

    Lippi G, Pasalic L, Favaloro EJ. Detection of mild inherited disorders of blood coagulation: current options and personal recommendations. Expert Rev Hematol 2015;8:527–42.CrossrefPubMedGoogle Scholar

  • 29.

    Chapin JC, Hajjar KA. Fibrinolysis and the control of blood coagulation. Blood Rev 2015;29:17–24.CrossrefPubMedGoogle Scholar

  • 30.

    Longstaff C, Adcock D, Olson JD, Jennings I, Kitchen S, Mutch N, et al. Harmonisation of D-dimer – A call for action. Thromb Res 2016;137:219–20.CrossrefGoogle Scholar

  • 31.

    Favaloro EJ, Lippi G. Coagulation update: what’s new in hemostasis testing? Thromb Res 2011;127 Suppl 2:S13–6.CrossrefPubMedGoogle Scholar

  • 32.

    Lippi G, Franchini M, Favaloro EJ. Diagnostics of inherited bleeding disorders of secondary hemostasis: an easy guide for routine clinical laboratories. Semin Thromb Hemost 2016;42: 471–7.PubMedCrossrefGoogle Scholar

  • 33.

    Wikkelsø A, Wetterslev J, Møller AM, Afshari A. Thromboelastography (TEG) or rotational thromboelastometry (ROTEM) to monitor haemostatic treatment in bleeding patients: a systematic review with meta-analysis and trial sequential analysis. Anaesthesia 2017;72:519–31.CrossrefPubMedGoogle Scholar

  • 34.

    Salvagno GL, Berntorp E. Thrombin generation assays (TGAs). Methods Mol Biol 2017;1646:515–22.PubMedCrossrefGoogle Scholar

  • 35.

    Curnow J. The overall hemostatic potential (OHP) assay. Methods Mol Biol 2017;1646:523–31.CrossrefPubMedGoogle Scholar

  • 36.

    Swystun LL, James P. Using genetic diagnostics in hemophilia and von Willebrand disease. Hematology Am Soc Hematol Educ Program 2015;2015:152–9.PubMedGoogle Scholar

  • 37.

    Lippi G, Danese E, Favaloro EJ, Montagnana M, Franchini M. Diagnostics in venous thromboembolism: from origin to future prospects. Semin Thromb Hemost 2015;41:374–81.CrossrefPubMedGoogle Scholar

  • 38.

    Thachil J, Lippi G, Favaloro EJ. D-Dimer testing: laboratory aspects and current issues. Methods Mol Biol 2017;1646:91–104.CrossrefPubMedGoogle Scholar

  • 39.

    Wada H, Matsumoto T, Yamashita Y. Diagnosis and treatment of disseminated intravascular coagulation (DIC) according to four DIC guidelines. J Intensive Care 2014;2:15.CrossrefPubMedGoogle Scholar

  • 40.

    Moll S. Thrombophilia: clinical-practical aspects. J Thromb Thrombolysis 2015;39:367–78.PubMedCrossrefGoogle Scholar

  • 41.

    Stevens SM, Woller SC, Bauer KA, Kasthuri R, Cushman M, Streiff M, et al. Guidance for the evaluation and treatment of hereditary and acquired thrombophilia. J Thromb Thrombolysis 2016;41:154–64.PubMedCrossrefGoogle Scholar

  • 42.

    Lippi G, Mattiuzzi C, Cervellin G, Favaloro EJ. Direct oral anticoagulants: analysis of worldwide use and popularity using Google Trends. Ann Transl Med 2017;5:322.CrossrefPubMedGoogle Scholar

  • 43.

    Lippi G, Favaloro EJ. Recent guidelines and recommendations for laboratory assessment of the direct oral anticoagulants (DOACs): is there consensus? Clin Chem Lab Med 2015;53:185–97.PubMedGoogle Scholar

  • 44.

    Favaloro EJ, Pasalic L, Curnow J, Lippi G. Laboratory monitoring or measurement of direct oral anticoagulants (DOACs): advantages, limitations and future challenges. Curr Drug Metab 2017;18:598–608.PubMedGoogle Scholar

  • 45.

    Adcock DM, Gosselin RC. Laboratory assessment of hemostatic and anticoagulant therapy. Semin Thromb Hemost 2017;43:242–4.PubMedCrossrefGoogle Scholar

  • 46.

    Clerico A, Zaninotto M, Ripoli A, Masotti S, Prontera C, Passino C, et al. The 99th percentile of reference population for cTnI and cTnT assay: methodology, pathophysiology and clinical implications. Clin Chem Lab Med 2017;55:1634–51.PubMedGoogle Scholar

  • 47.

    Lippi G, Favaloro EJ. Venous and arterial thromboses: two sides of the same coin? Semin Thromb Hemost 2017 Sep 25. doi: 10.1055/s-0037-1607202. [Epub ahead of print].PubMedGoogle Scholar

  • 48.

    Favaloro EJ, Lippi G. Laboratory testing in the era of direct or non-vitamin K antagonist oral anticoagulants: a practical guide to measuring their activity and avoiding diagnostic errors. Semin Thromb Hemost 2015;41:208–27.CrossrefPubMedGoogle Scholar

  • 49.

    Sambu N, Curzen N. Monitoring the effectiveness of antiplatelet therapy: opportunities and limitations. Br J Clin Pharmacol 2011;72:683–96.CrossrefPubMedGoogle Scholar

  • 50.

    Jovanovic L, Antonijevic N, Novakovic T, Savic N, Terzic B, Zivkovic I, et al. Practical aspects of monitoring of antiplatelet therapy. Semin Thromb Hemost 2017;43:14–23.PubMedGoogle Scholar

  • 51.

    Castellone DD, Adcock DM. Factor VIII activity and inhibitor assays in the diagnosis and treatment of hemophilia A. Semin Thromb Hemost 2017;43:320–30.PubMedGoogle Scholar

  • 52.

    Favaloro EJ, Pasalic L, Curnow J. Monitoring therapy during treatment of von willebrand disease. Semin Thromb Hemost 2017;43:338–54.PubMedGoogle Scholar

  • 53.

    Lippi G, Plebani M, Favaloro EJ. The changing face of hemostasis testing in modern laboratories: consolidation, automation, and beyond. Semin Thromb Hemost 2015;41:294–9.CrossrefPubMedGoogle Scholar

  • 54.

    Plebani M, Lippi G. Is laboratory medicine a dying profession? Blessed are those who have not seen and yet have believed. Clin Biochem 2010;43:939–41.PubMedCrossrefGoogle Scholar

  • 55.

    Lippi G, Plebani M. The add value of laboratory diagnostics: the many reasons why decision-makers should actually care. J Lab Prec Med 2017;2:100.CrossrefGoogle Scholar

  • 56.

    Lippi G, Plebani M, Favaloro EJ. Technological advances in the hemostasis laboratory. Semin Thromb Hemost 2014;40:178–85.PubMedCrossrefGoogle Scholar

  • 57.

    Nagalla S, Bray PF. Personalized medicine in thrombosis: back to the future. Blood 2016;127:2665–71.CrossrefPubMedGoogle Scholar

  • 58.

    Danese E, Montagnana M, Fava C, Guidi GC. Circulating nucleic acids and hemostasis: biological basis behind their relationship and technical issues in assessment. Semin Thromb Hemost 2014;40:766–73.CrossrefPubMedGoogle Scholar

  • 59.

    Mancuso ME, Fasulo MR. Thrombin generation assay as a laboratory monitoring tool during bypassing therapy in patients with hemophilia and inhibitors. Semin Thromb Hemost 2016;42:30–5.PubMedGoogle Scholar

  • 60.

    Mumford AD, Frelinger AL 3rd, Gachet C, Gresele P, Noris P, Harrison P, et al. A review of platelet secretion assays for the diagnosis of inherited platelet secretion disorders. Thromb Haemost 2015;114:14–25.CrossrefGoogle Scholar

  • 61.

    Lippi G, Bovo C, Favaloro EJ. Reflections on the next generation of hemostasis instrumentation. A glimpse into the future? LaboratoriumsMedizin 2016;40:1–7.Google Scholar

  • 62.

    Lippi G, Mattiuzzi C, Favaloro EJ. Novel and emerging therapies: thrombus-targeted fibrinolysis. Semin Thromb Hemost 2013;39:48–58.PubMedGoogle Scholar

  • 63.

    Swystun LL, James PD. Genetic diagnosis in hemophilia and von Willebrand disease. Blood Rev 2017;31:47–56.PubMedCrossrefGoogle Scholar

  • 64.

    Cunha ML, Meijers JC, Middeldorp S. Introduction to the analysis of next generation sequencing data and its application to venous thromboembolism. Thromb Haemost 2015;114: 920–32.PubMedCrossrefGoogle Scholar

  • 65.

    Lannoy N, Hermans C. Principles of genetic variations and molecular diseases: applications in hemophilia A. Crit Rev Oncol Hematol 2016;104:1–8.PubMedCrossrefGoogle Scholar

  • 66.

    MacArthur DG, Manolio TA, Dimmock DP, Rehm HL, Shendure J, Abecasis GR, et al. Guidelines for investigating causality of sequence variants in human disease. Nature 2014;508:469–76.CrossrefPubMedGoogle Scholar

  • 67.

    Goodeve AC, Pavlova A, Oldenburg J. Genomics of bleeding disorders. Haemophilia 2014;20 Suppl 4:50–3.Google Scholar

  • 68.

    Kulkarni P, Frommolt P. Challenges in the setup of large-scale next-generation sequencing analysis workflows. Comput Struct Biotechnol J 2017;15:471–7.PubMedCrossrefGoogle Scholar

About the article

Corresponding author: Prof. Giuseppe Lippi, Section of Clinical Biochemistry, University Hospital of Verona, Piazzale LA Scuro, 37100 – Verona, Italy, E-mail: ulippi@tin.it

Received: 2017-12-24

Accepted: 2018-01-19

Published Online: 2018-02-19

Published in Print: 2018-06-27

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), Volume 56, Issue 7, Pages 1035–1045, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/cclm-2017-1205.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Giuseppe Lippi, Mario Plebani, and Emmanuel J. Favaloro
Diagnosis, 2018, Volume 0, Number 0
Giuseppe Lippi and Camilla Mattiuzzi
Journal of Medical Biochemistry, 2019, Volume 38, Number 4, Page 401
Gian Luca Salvagno, Davide Demonte, Matteo Gelati, Giovanni Poli, Emmanuel J. Favaloro, and Giuseppe Lippi
Journal of Medical Biochemistry, 2019, Volume 0, Number 0
Giuseppe Lippi, Dorothy Adcock, and Emmanuel J. Favaloro
Diagnosis, 2019, Volume 6, Number 3, Page 223

Comments (0)

Please log in or register to comment.
Log in