Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Greaves, Ronda / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter

IMPACT FACTOR 2018: 3.638

CiteScore 2018: 2.44

SCImago Journal Rank (SJR) 2018: 1.191
Source Normalized Impact per Paper (SNIP) 2018: 1.205

See all formats and pricing
More options …
Volume 57, Issue 10


Next-generation reference intervals for pediatric hematology

Jakob Zierk
  • Corresponding author
  • Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Loschgestr. 15, 91054 Erlangen, Germany, Phone: +49 9131/85-33731, Fax: +49 9131/85-35742
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Johannes Hirschmann
  • Chair of Medical Informatics, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dennis Toddenroth
  • Chair of Medical Informatics, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Farhad Arzideh / Rainer Haeckel / Alexander Bertram / Holger Cario / Michael C. Frühwald / Hans-Jürgen Groß / Arndt Groening / Stefanie Grützner / Thomas Gscheidmeier / Torsten Hoff / Reinhard Hoffmann / Rainer Klauke / Alexander Krebs / Ralf Lichtinghagen / Sabine Mühlenbrock-Lenter / Michael Neumann / Peter Nöllke
  • Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Charlotte M. Niemeyer
  • Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Oliver Razum
  • Department of Epidemiology & International Public Health, School of Public Health, Bielefeld University, Bielefeld, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hans-Georg Ruf / Udo Steigerwald / Thomas Streichert / Antje Torge
  • Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wolfgang Rascher
  • Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hans-Ulrich Prokosch
  • Chair of Medical Informatics, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Manfred Rauh
  • Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Markus Metzler
  • Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-04-22 | DOI: https://doi.org/10.1515/cclm-2018-1236



Interpreting hematology analytes in children is challenging due to the extensive changes in hematopoiesis that accompany physiological development and lead to pronounced sex- and age-specific dynamics. Continuous percentile charts from birth to adulthood allow accurate consideration of these dynamics. However, the ethical and practical challenges unique to pediatric reference intervals have restricted the creation of such percentile charts, and limitations in current approaches to laboratory test result displays restrict their use when guiding clinical decisions.


We employed an improved data-driven approach to create percentile charts from laboratory data collected during patient care in 10 German centers (9,576,910 samples from 358,292 patients, 412,905–1,278,987 samples per analyte). We demonstrate visualization of hematology test results using percentile charts and z-scores (www.pedref.org/hematology) and assess the potential of percentiles and z-scores to support diagnosis of different hematological diseases.


We created percentile charts for hemoglobin, hematocrit, red cell indices, red cell count, red cell distribution width, white cell count and platelet count in girls and boys from birth to 18 years of age. Comparison of pediatricians evaluating complex clinical scenarios using percentile charts versus conventional/tabular representations shows that percentile charts can enhance physician assessment in selected example cases. Age-specific percentiles and z-scores, compared with absolute test results, improve the identification of children with blood count abnormalities and the discrimination between different hematological diseases.


The provided reference intervals enable precise assessment of pediatric hematology test results. Representation of test results using percentiles and z-scores facilitates their interpretation and demonstrates the potential of digital approaches to improve clinical decision-making.

This article offers supplementary material which is provided at the end of the article.

Keywords: hematology; laboratory test result display; pediatric reference intervals


  • 1.

    Adeli K, Raizman JE, Chen Y, Higgins V, Nieuwesteeg M, Abdelhaleem M, et al. Complex biological profile of hematologic markers across pediatric, adult, and geriatric ages: establishment of robust pediatric and adult reference intervals on the basis of the Canadian health measures survey. Clin Chem 2015;61:1075–86.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 2.

    Ceriotti F. Establishing pediatric reference intervals: a challenging task. Clin Chem 2012;58:808–10.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 3.

    Metz MP, Loh TP. Describing children’s changes using clinical chemistry analytes. Clin Chem Lab Med 2016;55:1–2.Web of ScienceGoogle Scholar

  • 4.

    Higgins V, Adeli K. Advances in pediatric reference intervals: from discrete to continuous. J Lab Precis Med 2018;3. Available from: http://jlpm.amegroups.com/article/view/3976.

  • 5.

    Mørkrid L, Rowe AD, Elgstoen KB, Olesen JH, Ruijter G, Hall PL, et al. Continuous age- and sex-adjusted reference intervals of urinary markers for cerebral creatine deficiency syndromes: a novel approach to the definition of reference intervals. Clin Chem 2015;61:760–8.CrossrefWeb of SciencePubMedGoogle Scholar

  • 6.

    Loh TP, Metz MP. Trends and physiology of common serum biochemistries in children aged 0–18 years. Pathology (Phila). 2015;47:452–61.Google Scholar

  • 7.

    Bussler S, Vogel M, Pietzner D, Harms K, Buzek T, Penke M, et al. New pediatric percentiles of liver enzyme serum levels (ALT, AST, GGT): effects of age, sex, BMI and pubertal stage. Hepatol Baltim Md 2017.Google Scholar

  • 8.

    Dortschy R, Schaffrath RA, Scheidt-Nave C, Thierfelder W, Thamm M, Gutsche J, u. a. Bevölkerungsbezogene Verteilungswerte ausgewählter Laborparameter aus der Studie zur Gesundheit von Kindern und Jugendlichen in Deutschland (KiGGS). Berlin: Robert Koch-Institut; 2009. (Beiträge zur Gesundheitsberichterstattung des Bundes)Google Scholar

  • 9.

    Zierk J, Arzideh F, Rechenauer T, Haeckel R, Rascher W, Metzler M, et al. Age- and sex-specific dynamics in 22 hematologic and biochemical analytes from birth to adolescence. Clin Chem 2015;61:964–73.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 10.

    Zongbo C, Guoxuan L, Biyun Z, Ziping L. The investigation of venous blood cell reference interval for 3–14 years old healthy children in Nanhai district of Foshan city. Int J Lab Med 2014;8:1005–6.Google Scholar

  • 11.

    Orkin SH, Nathan DG, Ginsburg D, Look AT, Fisher DE, Lux S IV. Nathan and Oski’s hematology and oncology of infancy and childhood, 8th ed. Philadelphia, PA, USA: Saunders, 2014:2752.Google Scholar

  • 12.

    Cembrowski G, Chan J, Cheng C, Bamforth F. NHANES 1999–2000 Data used to create comprehensive health-associated race-, sex-, and age-stratified reference intervals for the Coulter MAXM. Lab Hematol 2004;10:245–6.Google Scholar

  • 13.

    Aldrimer M, Ridefelt P, Rödöö P, Niklasson F, Gustafsson J, Hellberg D. Population-based pediatric reference intervals for hematology, iron and transferrin. Scand J Clin Lab Invest 2013;73:253–61.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 14.

    Zierk J, Arzideh F, Haeckel R, Rascher W, Rauh M, Metzler M. Indirect determination of pediatric blood count reference intervals. Clin Chem Lab Med 2013;51:863–72.Web of SciencePubMedGoogle Scholar

  • 15.

    Adetifa IM, Hill PC, Jeffries DJ, Jackson-Sillah D, Ibanga HB, Bah G, et al. Haematological values from a Gambian cohort – possible reference range for a West African population. Int J Lab Hematol 2009;31:615–22.CrossrefWeb of ScienceGoogle Scholar

  • 16.

    Revision of the “Guideline of the German Medical Association on Quality Assurance in Medical Laboratory Examinations – Rili-BAEK” (unauthorized translation). LaboratoriumsMedizin 2015;39:26.Web of ScienceGoogle Scholar

  • 17.

    Neufassung der „Richtlinie der Bundesärztekammer zur Qualitätssicherung laboratoriumsmedizinischer Untersuchungen – Rili-BÄK“ – Richtlinie der Bundesärztekammer zur Qualitätssicherung laboratoriumsmedizinischer Untersuchungen. Dtsch Arztebl Int 2014;111:A-1583.Google Scholar

  • 18.

    Arzideh F, Wosniok W, Haeckel R. Reference limits of plasma and serum creatinine concentrations from intra-laboratory data bases of several German and Italian medical centres: comparison between direct and indirect procedures. Clin Chim Acta 2010;411:215–21.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 19.

    Arzideh F, Wosniok W, Haeckel R. Indirect reference intervals of plasma and serum thyrotropin (TSH) concentrations from intra-laboratory data bases from several German and Italian medical centres. Clin Chem Lab Med 2011;49:659–64.Web of SciencePubMedGoogle Scholar

  • 20.

    Zierk J, Arzideh F, Haeckel R, Rauh M, Metzler M, Ganslandt T, et al. Indirect determination of hematology reference intervals in adult patients on Beckman Coulter UniCell DxH 800 and Abbott CELL-DYN Sapphire devices. Clin Chem Lab Med 2018; doi: 10.1515/cclm-2018-0771. [Epub ahead of print].Web of ScienceGoogle Scholar

  • 21.

    Zierk J, Arzideh F, Haeckel R, Cario H, Frühwald MC, Groß H-J, et al. Pediatric reference intervals for alkaline phosphatase. Clin Chem Lab Med 2017;55:102–10.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 22.

    R Core Team. R: A Language and Environment for Statistical Computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2016. Available from: https://www.R-project.org/.

  • 23.

    Razum O, Wenner J. Social and health epidemiology of immigrants in Germany: past, present and future. Public Health Rev 2016;37:4.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 24.

    Quantity quotient reporting versus z-value for standardizing quantitative laboratory results: LaboratoriumsMedizin – J Lab Med [Internet] 2017 [cited 2017 Aug 26]. Available from: https://www.degruyter.com/view/j/labm.2017.41.issue-2/labmed-2017-0007/labmed-2017-0007.xml.

  • 25.

    Bailey D, Colantonio D, Kyriakopoulou L, Cohen AH, Chan MK, Armbruster D, et al. Marked biological variance in endocrine and biochemical markers in childhood: establishment of pediatric reference intervals using healthy community children from the CALIPER cohort. Clin Chem 2013;59:1393–405.Web of ScienceCrossrefGoogle Scholar

  • 26.

    Hasle H, Aricò M, Basso G, Biondi A, Cantù Rajnoldi A, Creutzig U, et al. Myelodysplastic syndrome, juvenile myelomonocytic leukemia, and acute myeloid leukemia associated with complete or partial monosomy 7. European Working Group on MDS in Childhood (EWOG-MDS). Leukemia 1999;13:376–85.CrossrefGoogle Scholar

  • 27.

    Niemeyer CM, Arico M, Basso G, Biondi A, Cantu Rajnoldi A, Creutzig U, et al. Chronic myelomonocytic leukemia in childhood: a retrospective analysis of 110 cases. European Working Group on Myelodysplastic Syndromes in Childhood (EWOG-MDS). Blood 1997;89:3534–43.Google Scholar

  • 28.

    Baumann I, Führer M, Behrendt S, Campr V, Csomor J, Furlan I, et al. Morphological differentiation of severe aplastic anaemia from hypocellular refractory cytopenia of childhood: reproducibility of histopathological diagnostic criteria. Histopathology 2012;61:10–7.CrossrefWeb of SciencePubMedGoogle Scholar

  • 29.

    Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. J Mach Learn Res 2011;12:2825−30.Google Scholar

  • 30.

    Razum O, Zeeb H, Akgün S. How useful is a name-based algorithm in health research among Turkish migrants in Germany? Trop Med Int Health 2001;6:654–61.PubMedCrossrefGoogle Scholar

  • 31.

    Razum O, Zeeb H, Beck K, Becher H, Ziegler H, StegmaierC. Combining a name algorithm with a capture–recapture method to retrieve cases of Turkish descent from a German population-based cancer registry. Eur J Cancer 2000;36:2380–4.CrossrefPubMedGoogle Scholar

  • 32.

    Van den Bossche J, Devreese K, Malfait R, Van de Vyvere M, Wauters A, Neels H, et al. Reference intervals for a complete blood count determined on different automated haematology analysers: Abx Pentra 120 Retic, Coulter Gen-S, Sysmex SE 9500, Abbott Cell Dyn 4000 and Bayer Advia 120. Clin Chem Lab Med 2005;40:69–73.Google Scholar

  • 33.

    Gollomp K, Arulselvan A, Tanzer M, Shibutani S, Lambert MP. Honing in on the range: using the electronic medical record to establish normal reference ranges for pediatric coagulation testing. Blood 2015;126:4450.Google Scholar

  • 34.

    Haeckel R, Wosniok W, Arzideh F, Zierk J, Gurr E, Streichert T. Critical comments to a recent EFLM recommendation for the review of reference intervals. Clin Chem Lab Med 2017 [cited 2017 Feb 3];0(0). Available from: https://www.degruyter.com/view/j/cclm.ahead-of-print/cclm-2016-1112/cclm-2016-1112.xml?format=INT.PubMedWeb of Science

  • 35.

    Minter Baerg MM, Stoway SD, Hart J, Mott L, Peck DS, Nett SL, et al. Precision newborn screening for lysosomal disorders. Genet Med Off J Am Coll Med Genet 2018;20:847–54.Google Scholar

  • 36.

    Marquardt G, Currier R, McHugh DM, Gavrilov D, MageraMJ, Matern D, et al. Enhanced interpretation of newborn screening results without analyte cutoff values. Genet Med 2012;14:648–55.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 37.

    Wilkes EH, Rumsby G, Woodward GM. Using machine learning to aid the interpretation of urine steroid profiles. Clin Chem 2018;64:1586–95.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 38.

    Sheffer-Mimouni G, Mimouni FB, Lubetzky R, Kupferminc M, Deutsch V, Dollberg S. Labor does not affect the neonatal absolute nucleated red blood cell count. Am J Perinatol 2003;20:367–71.PubMedCrossrefGoogle Scholar

  • 39.

    Melioli G, Risso FM, Sannia A, Serra G, Bologna R, Mussap M, et al. Reference values of blood cell counts in the first days of life. Front Biosci Elite Ed 2011;3:871–8.PubMedGoogle Scholar

  • 40.

    Andropoulos DB. Appendix B: Pediatric normal laboratory values. In: Gregory GA, Andropoulos DB, editors. Gregory’s Pediatric Anesthesia [Internet]. Hoboken, NJ, USA: Wiley- Blackwell, 2012:1300–14 [cited 2016 Nov 19]. http:// onlinelibrary.wiley.com/doi/10.1002/9781444345186.app2/summary.

  • 41.

    Wiedmeier SE, Henry E, Sola-Visner MC, Christensen RD. Platelet reference ranges for neonates, defined using data from over 47,000 patients in a multihospital healthcare system. J Perinatol 2009;29:130–6.CrossrefWeb of ScienceGoogle Scholar

  • 42.

    Lawrie D, Payne H, Nieuwoudt M, Glencross DK. Observed full blood count and lymphocyte subset values in a cohort of clinically healthy South African children from a semi-informal settlement in Cape Town. S Afr Med J 2015;105:589–95.CrossrefGoogle Scholar

About the article

Received: 2018-11-18

Accepted: 2019-03-02

Published Online: 2019-04-22

Published in Print: 2019-09-25

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: Supported by the Interdisciplinary Center for Clinical Research (IZKF) at the University Hospital of the University of Erlangen-Nuremberg.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), Volume 57, Issue 10, Pages 1595–1607, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/cclm-2018-1236.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in