Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Greaves, Ronda / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter


IMPACT FACTOR 2018: 3.638

CiteScore 2018: 2.44

SCImago Journal Rank (SJR) 2018: 1.191
Source Normalized Impact per Paper (SNIP) 2018: 1.205

Online
ISSN
1437-4331
See all formats and pricing
More options …
Volume 57, Issue 10

Issues

Extra-analytical sources of uncertainty: which ones really matter?

Andrea PadoanORCID iD: https://orcid.org/0000-0003-1284-7885
  • Corresponding author
  • Department of Laboratory Medicine, University-Hospital of Padova, Padova, Italy
  • Department of Medicine – DIMED, University of Padova, via Giustiniani 2, 35128 Padova, Italy, Phone: +390498212801, Fax: +390498211981
  • orcid.org/0000-0003-1284-7885
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Laura SciacovelliORCID iD: https://orcid.org/0000-0003-3156-1399 / Rui Zhou
  • Department of Laboratory Medicine, Beijing Chao-yang Hospital, Capital Medical University, Beijing, P.R. China
  • Beijing Center for Clinical Laboratories, Beijing, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mario PlebaniORCID iD: https://orcid.org/0000-0002-0270-1711
Published Online: 2019-05-23 | DOI: https://doi.org/10.1515/cclm-2019-0197

Abstract

Since the endorsement by ISO15189:2012 of measurement uncertainty (MU) for the estimation of error in measurement procedures, the debate has been ongoing with questions concerning which method should be used for estimating MU and the benefits of using MU over other error methods. However, only limited attention has been given to extra-analytical sources of uncertainty and, currently, a clear standpoint is still missing. This opinion paper aims to evaluate whether extra-analytical variables could be included in MU. Considering coagulation tests as an example, the possible sources of preanalytical variations are evaluated by using a fishbone diagram. After excluding preanalytical errors, additional sources of uncertainty are divided into amenable to standardization/harmonization and/or possible random sources, which are not standardizable nor harmonizable. Finally, sources of uncertainty are evaluated for a possible inclusion into MU. In addition, postanalytical uncertainty is discussed, particularly considering the laboratory results calculated through a mathematical equation, derived from one or more quantities affected by their specific uncertainty.

Keywords: extra-analytical; harmonization; measurement uncertainty; postanalytical; preanalytical; standardization

References

  • 1.

    ISO. ISO 15189: Medical laboratories – requirements for quality and competence. Geneva: International Organization for Standardization (ISO), 2012.Google Scholar

  • 2.

    Westgard JO. Error methods are more practical, but uncertainty methods may still be preferred. Clin Chem 2018;64:636–8.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 3.

    Farrance I, Badrick T, Frenkel R. Uncertainty in measurement and total error: different roads to the same quality goal? Clin Chem Lab Med 2018;56:2010–4.CrossrefGoogle Scholar

  • 4.

    Farrance I, Badrick T, Sikaris KA. Uncertainty in measurement and total error – are they so incompatible? Clin Chem Lab Med 2016;54:1309–11.PubMedWeb of ScienceGoogle Scholar

  • 5.

    Padoan A, Sciacovelli L, Aita A, Antonelli G, Plebani M. Measurement uncertainty in laboratory reports: a tool for improving the interpretation of test results. Clin Biochem 2018;57:41–7.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 6.

    Padoan A, Antonelli G, Aita A, Sciacovelli L, Plebani M. An approach for estimating measurement uncertainty in medical laboratories using data from long-term quality control and external quality assessment schemes. Clin Chem Lab Med 2017;55:1696–701.Web of SciencePubMedGoogle Scholar

  • 7.

    Plebani M, Sciacovelli L, Bernardi D, Aita A, Antonelli G, Padoan A. What information on measurement uncertainty should be communicated to clinicians, and how? Clin Biochem 2018;54:18–22.Web of ScienceGoogle Scholar

  • 8.

    Oosterhuis WP, Bayat H, Armbruster D, Coşkun A, Freeman KP, Kallner A, et al. The use of error and uncertainty methods in the medical laboratory. Clin Chem Lab Med 2018;56:209–19.Web of ScienceCrossrefPubMedGoogle Scholar

  • 9.

    JCGM 100:2008. Evaluation of measurement data – guide to the expression of uncertainty in measurement (GUM). Available from: www.bipm.org. Accessed: September 2018.

  • 10.

    Bhise V, Rajan SS, Sittig DF, Morgan RO, Chaudhary P, Singh H. Defining and measuring diagnostic uncertainty in medicine: a systematic review. J Gen Intern Med 2018;33:103–15.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 11.

    Favaloro EJ, Dorothy MF, Lippi G. Pre-analytical variables in coagulation testing associated with diagnostic errors in hemostasis. Lab Med 2012;43:1–10.Google Scholar

  • 12.

    JCGM 200:2012. International vocabulary of metrology – basic and general concepts and associated terms. Available from: www.bipm.org. Accessed: September 2018.

  • 13.

    Plebani M. Harmonization in laboratory medicine: more than clinical chemistry? Clin Chem Lab Med 2018;56:1579–86.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 14.

    Clinical and Laboratory Standards Institute (CLSI). GP44-A4: procedures for the handling and processing of blood specimens for common laboratory tests; approved guideline – fourth edition. Wayne, PA, USA: CLSI, 2010.Google Scholar

  • 15.

    Magnette A, Chatelain M, Chatelain B, Ten Cate H, Mullier F. Pre-analytical issues in the haemostasis laboratory: guidance for the clinical laboratories. Thromb J 2016;14:49.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 16.

    Guder WG. Samples: from the patient to the laboratory: the impact of preanalytical variables on the quality of laboratory results, 3rd ed. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2003.Google Scholar

  • 17.

    Plebani M, Giuseppe L. Hemolysis index: quality indicator or criterion for sample rejection? Clin Chem Lab Med 2009;47:899–902.PubMedWeb of ScienceGoogle Scholar

  • 18.

    Nikolac N. Lipemia: causes, interference mechanisms, detection and management. Biochem Medica 2014;24:57–67.Google Scholar

  • 19.

    Bowen RA, Chan Y, Cohen J, Rehak NN, Hortin GL, Csako G, et al. Effect of blood collection tubes on total triiodothyronine and other laboratory assays. Clin Chem 2005;51:424–33.PubMedCrossrefGoogle Scholar

  • 20.

    Sylte MS, Wentzel-Larsen T, Bolann BJ. Estimation of the minimal preanalytical uncertainty for 15 clinical chemistry serum analytes. Clin Chem 2010;56:1329–35.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 21.

    Chun KY. Biotin interference in diagnostic tests. Clin Chem 2017;63:619–20.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 22.

    Chang CH, Wang YW, Yeh Liu PY, Kao Yang YH. A practical approach to minimize the interaction of dietary vitamin K with warfarin. J Clin Pharm Ther 2014;39:56–60.CrossrefWeb of SciencePubMedGoogle Scholar

  • 23.

    Vos MJ, Rondeel JM, Mijnhout GS, Endert E. Immunoassay interference caused by heterophilic antibodies interacting with biotin. Clin Chem Lab Med 2017;55:e122–6.Web of ScienceCrossrefPubMedGoogle Scholar

  • 24.

    Favaloro EJ. How to generate a more accurate laboratory-based international normalized ratio: solutions to obtaining or verifying the mean normal prothrombin time and international sensitivity index. Semin Thromb Hemost 2019;45:10–21.CrossrefWeb of SciencePubMedGoogle Scholar

  • 25.

    Kouri T, Siloaho M, Pohjavaara S, Koskinen P, Malminiemi O, Pohja-Nylander P, et al. Pre-analytical factors and measurement uncertainty. Scand J Clin Lab Invest 2005;65:463–76.CrossrefPubMedGoogle Scholar

  • 26.

    Jones GR, Hawkins RC. Correcting laboratory results for the effects of interferences: an approach incorporating uncertainty of measurement. Ann Clin Biochem 2015;52:226–31.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 27.

    Farrance I, Badrick T, Frenkel R. Uncertainty in measurement: a review of the procedures for determining uncertainty in measurement and its use in deriving the biological variation of the estimated glomerular filtration rate. Pract Lab Med 2018;12:e00097.PubMedCrossrefGoogle Scholar

  • 28.

    Chew G, Walczyk T. A Monte Carlo approach for estimating measurement uncertainty using standard spreadsheet software. Anal Bioanal Chem 2012;402:2463–9.Web of SciencePubMedCrossrefGoogle Scholar

  • 29.

    Hunter DJ. Uncertainty in the era of precision medicine. N Engl J Med 2016;375:711–3.CrossrefPubMedWeb of ScienceGoogle Scholar

About the article

Received: 2019-02-20

Accepted: 2019-04-23

Published Online: 2019-05-23

Published in Print: 2019-09-25


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.


Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), Volume 57, Issue 10, Pages 1488–1493, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/cclm-2019-0197.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in