Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Greaves, Ronda / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter


IMPACT FACTOR 2018: 3.638

CiteScore 2018: 2.44

SCImago Journal Rank (SJR) 2018: 1.191
Source Normalized Impact per Paper (SNIP) 2018: 1.205

Online
ISSN
1437-4331
See all formats and pricing
More options …
Volume 57, Issue 5

Issues

Mass spectrometry based analytical quality assessment of serum and plasma specimens with patterns of endo- and exogenous peptides

Peter Findeisen
  • Corresponding author
  • Institute for Clinical Chemistry, Mannheim Medical Faculty of Heidelberg University, University Hospital Mannheim, Mannheim, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shruthi Hemanna
  • Institute for Clinical Chemistry, Mannheim Medical Faculty of Heidelberg University, University Hospital Mannheim, Mannheim, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Romi Singh Maharjan
  • Institute for Clinical Chemistry, Mannheim Medical Faculty of Heidelberg University, University Hospital Mannheim, Mannheim, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sonani Mindt
  • Institute for Clinical Chemistry, Mannheim Medical Faculty of Heidelberg University, University Hospital Mannheim, Mannheim, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Victor Costina
  • Institute for Clinical Chemistry, Mannheim Medical Faculty of Heidelberg University, University Hospital Mannheim, Mannheim, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ralf Hofheinz
  • Day Treatment Center (TTZ), Interdisciplinary Tumor Center Mannheim (ITM) & III Medical Clinic, Mannheim, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael Neumaier
  • Institute for Clinical Chemistry, Mannheim Medical Faculty of Heidelberg University, University Hospital Mannheim, Mannheim, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-12-04 | DOI: https://doi.org/10.1515/cclm-2018-0811

Abstract

Background

Inappropriate preanalytical sample handling is a major threat for any biomarker discovery approach. Blood specimens have a genuine proteolytic activity that leads to a time dependent decay of peptidic quality control markers (QCMs). The aim of this study was to identify QCMs for direct assessment of sample quality (DASQ) of serum and plasma specimens.

Methods

Serum and plasma specimens of healthy volunteers and tumor patients were spiked with two synthetic reporter peptides (exogenous QCMs) and aged under controlled conditions for up to 24 h. The proteolytic fragments of endogenous and exogenous QCMs were monitored for each time point by mass spectrometry (MS). The decay pattern of peptides was used for supervised classification of samples according to their respective preanalytical quality.

Results

The classification accuracy for fresh specimens (1 h) was 96% and 99% for serum and plasma specimens, respectively, when endo- and exogenous QCMs were used for the calculations. However, classification of older specimens was more difficult and overall classification accuracy decreased to 79%.

Conclusions

MALDI-TOF MS is a simple and robust method that can be used for DASQ of serum and plasma specimens in a high throughput manner. We propose DASQ as a fast and simple step that can be included in multicentric large-scale projects to ensure the homogeneity of sample quality.

Keywords: biobank; biomarker discovery; direct assessment of sample quality; MALDI-TOF mass spectrometry; plasma; preanalytic error; serum

References

  • 1.

    Anderson NL. The clinical plasma proteome: a survey of clinical assays for proteins in plasma and serum. Clin Chem 2010;56:177–85.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 2.

    Gaye A, Peakman T, Tobin MD, Burton PR. Understanding the impact of pre-analytic variation in haematological and clinical chemistry analytes on the power of association studies. Int J Epidemiol 2014;43:1633–44.CrossrefWeb of SciencePubMedGoogle Scholar

  • 3.

    Yi J, Warunek D, Craft D. Degradation and stabilization of peptide hormones in human blood specimens. PLoS One 2015;10:e0134427.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 4.

    Yi J, Liu Z, Craft D, O’Mullan P, Ju G, Gelfand CA. Intrinsic peptidase activity causes a sequential multi-step reaction (SMSR) in digestion of human plasma peptides. J Proteome Res 2008;7:5112–8.CrossrefWeb of SciencePubMedGoogle Scholar

  • 5.

    McShane LM, Hayes DF. Publication of tumor marker research results: the necessity for complete and transparent reporting. J Clin Oncol 2012;30:4223–32.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 6.

    Banks RE. Preanalytical influences in clinical proteomic studies: raising awareness of fundamental issues in sample banking. Clin Chem 2008;54:6–7.PubMedWeb of ScienceGoogle Scholar

  • 7.

    Rifai N, Gillette M, Carr S. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotech 2006;24:971–83.CrossrefGoogle Scholar

  • 8.

    Ransohoff D. Bias as a threat to the validity of cancer molecular-marker research. Nat Rev Cancer 2005;5:142–9.CrossrefPubMedGoogle Scholar

  • 9.

    Lehmann S, Guadagni F, Moore H, Ashton G, Barnes M, Benson E, et al. Standard preanalytical coding for biospecimens: review and implementation of the sample PREanalytical code (SPREC). Biopreserv Biobank 2012;10:366–74.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 10.

    Moore HM, Kelly A, McShane LM, Vaught J. Biospecimen reporting for improved study quality (BRISQ). Transfusion 2013;53:e1.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 11.

    McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM, et al. Reporting recommendations for tumor marker prognostic studies. J Clin Oncol 2005;23:9067–72.CrossrefPubMedGoogle Scholar

  • 12.

    Riondino S, Ferroni P, Spila A, Alessandroni J, D’Alessandro R, Formica V, et al. Ensuring sample quality for biomarker discovery studies – use of ICT tools to trace biosample life-cycle. Cancer Genomics Proteomics 2015;12:291–9.PubMedGoogle Scholar

  • 13.

    Greco V, Pieragostino D, Piras C, Aebersold R, Wiltfang J, Caltagirone C, et al. Direct analytical sample quality assessment for biomarker investigation: qualifying cerebrospinal fluid samples. Proteomics 2014;14:1954–62.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 14.

    Betsou F, Gunter E, Clements J, DeSouza Y, Goddard KA, Guadagni F, et al. Identification of evidence-based biospecimen quality-control tools: a report of the International Society for Biological and Environmental Repositories (ISBER) Biospecimen Science Working Group. J Mol Diagn 2013;15:3–16.Web of ScienceCrossrefGoogle Scholar

  • 15.

    Lengelle J, Panopoulos E, Betsou F. Soluble CD40 ligand as a biomarker for storage-related preanalytic variations of human serum. Cytokine 2008;44:275–82.Web of SciencePubMedCrossrefGoogle Scholar

  • 16.

    Geddes T, Ahmed S, Pruetz B, Larson D, Thibodeau B, Akervall J, et al. SPIN: development of sample-specific protein integrity numbers as an index of biospecimen quality. Biopreserv Biobank 2013;11:25–32.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 17.

    Romano P, Beitia San Vicente M, Profumo A. A mass spectrometry based method and a software tool to assess degradation status of serum samples to be used in proteomics for biomarker discovery. J Proteomics 2018;173:99–106.CrossrefWeb of ScienceGoogle Scholar

  • 18.

    Findeisen P, Thumfart JO, Costina V, Hofheinz R, Neumaier M. MS-based monitoring of proteolytic decay of synthetic reporter peptides for quality control of plasma and serum specimens. Am J Clin Pathol 2013;140:314–23.Web of ScienceCrossrefPubMedGoogle Scholar

  • 19.

    Thumfart J, Abidi N, Mindt S, Costina V, Hofheinz R, Klawonn F, et al. LC/MS based monitoring of endogenous decay markers for quality assessment of serum specimens. J Proteomics Bioinform 2015;8:91–7.Google Scholar

  • 20.

    Frank E, Hall M, Trigg L, Holmes G, Witten IH. Data mining in bioinformatics using Weka. Bioinformatics 2004;20:2479–81.PubMedCrossrefGoogle Scholar

  • 21.

    McDonald JH. Handbook of Biological Statistics. Baltimore, Maryland, 2014:305.Google Scholar

  • 22.

    Landwehr N, Hall M, Frank E. Machine Learning. Dordrecht, The Netherlands: Springer Science + Business Media, Inc., 2005.PubMedGoogle Scholar

  • 23.

    Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta 1975;405:442–51.PubMedCrossrefGoogle Scholar

  • 24.

    Dick LW Jr, Kim C, Qiu D, Cheng KC. Determination of the origin of the N-terminal pyro-glutamate variation in monoclonal antibodies using model peptides. Biotechnol Bioeng 2007;97:544–53.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 25.

    Sciacovelli L, Lippi G, Sumarac Z, West J, Garcia Del Pino Castro I, Furtado Vieira K, et al. Quality indicators in laboratory medicine: the status of the progress of IFCC Working Group “Laboratory Errors and Patient Safety” project. Clin Chem Lab Med 2017;55:348–57.Web of ScienceGoogle Scholar

  • 26.

    Lippi G, Baird GS, Banfi G, Bolenius K, Cadamuro J, Church S, et al. Improving quality in the preanalytical phase through innovation, on behalf of the European Federation for Clinical Chemistry and Laboratory Medicine (EFLM) Working Group for Preanalytical Phase (WG-PRE). Clin Chem Lab Med 2017;55:489–500.Web of ScienceGoogle Scholar

  • 27.

    Salvagno GL, Danese E, Lippi G. Preanalytical variables for liquid chromatography-mass spectrometry (LC-MS) analysis of human blood specimens. Clin Biochem 2017;50:582–6.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 28.

    Baker M. Biorepositories: Building better biobanks. Nature 2012;486:141–6.CrossrefPubMedGoogle Scholar

  • 29.

    Anton G, Wilson R, Yu ZH, Prehn C, Zukunft S, Adamski J, et al. Pre-analytical sample quality: metabolite ratios as an intrinsic marker for prolonged room temperature exposure of serum samples. PLoS One 2015;10:e0121495.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 30.

    Trezzi JP, Bulla A, Bellora C, Rose M, Lescuyer P, Kiehntopf M, et al. LacaScore: a novel plasma sample quality control tool based on ascorbic acid and lactic acid levels. Metabolomics 2016;12:96.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 31.

    Liu X, Hoene M, Yin P, Fritsche L, Plomgaard P, Hansen JS, et al. Quality control of serum and plasma by quantification of (4E,14Z)-sphingadienine-C18-1-phosphate uncovers common preanalytical errors during handling of whole blood. Clin Chem 2018;64:810–9.Web of ScienceCrossrefPubMedGoogle Scholar

  • 32.

    Yepes D, Costina V, Pilz LR, Hofheinz R, Neumaier M, Findeisen P. Multiplex profiling of tumor-associated proteolytic activity in serum of colorectal cancer patients. Proteomics Clin Appl 2014;8:308–16.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 33.

    Wildes D, Wells JA. Sampling the N-terminal proteome of human blood. Proc Natl Acad Sci USA 2010;107:4561–6.CrossrefGoogle Scholar

  • 34.

    Nedelkov D. Population proteomics: investigation of protein diversity in human populations. Proteomics 2008;8:779–86.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 35.

    Findeisen P, Post S, Wenz F, Neumaier M. Addition of exogenous reporter peptides to serum samples before mass spectrometry-based protease profiling provides advantages over profiling of endogenous peptides. Clin Chem 2007;53:1864–6.Web of ScienceCrossrefPubMedGoogle Scholar

  • 36.

    Yin P, Peter A, Franken H, Zhao X, Neukamm SS, RosenbaumL, et al. Preanalytical aspects and sample quality assessment in metabolomics studies of human blood. Clin Chem 2013;59:833–45.CrossrefWeb of SciencePubMedGoogle Scholar

  • 37.

    Kofanova O, Henry E, Aguilar Quesada R, Bulla A, Navarro Linares H, Lescuyer P, et al. IL8 and IL16 levels indicate serum and plasma quality. Clin Chem Lab Med 2018;56:1054–62.Web of ScienceCrossrefPubMedGoogle Scholar

  • 38.

    Banks R, Stanley A, Cairns D, Barrett J, Clarke P, Thompson D, et al. Influences of blood sample processing on low-molecular-weight proteome identified by surface-enhanced laser desorption/ionization mass spectrometry. Clin Chem 2005;51:1637–49.PubMedCrossrefGoogle Scholar

  • 39.

    Tammen H, Hess R. Collection and handling of blood specimens for peptidomics. Methods Mol Biol 2013;1023:161–8.Web of ScienceCrossrefPubMedGoogle Scholar

  • 40.

    Randall SA, McKay MJ, Baker MS, Molloy MP. Evaluation of blood collection tubes using selected reaction monitoring MS: implications for proteomic biomarker studies. Proteomics 2010;10:2050–6.Web of ScienceCrossrefPubMedGoogle Scholar

About the article

Corresponding author: Prof. Dr. Peter Findeisen, Institute for Clinical Chemistry, Mannheim Medical Faculty of Heidelberg University, University Hospital Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany, Phone: +49 621 383 2222, Fax: +49 621 383 3432


Received: 2018-07-30

Accepted: 2018-11-05

Published Online: 2018-12-04

Published in Print: 2019-04-24


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: This work was supported by the grant 01EK1505A from the German Federal Ministry of Education and Research.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.


Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), Volume 57, Issue 5, Pages 668–678, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/cclm-2018-0811.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in