Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Greaves, Ronda / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter


IMPACT FACTOR 2018: 3.638

CiteScore 2018: 2.44

SCImago Journal Rank (SJR) 2018: 1.191
Source Normalized Impact per Paper (SNIP) 2018: 1.205

Print
ISSN
1434-6621
See all formats and pricing
More options …
Volume 57, Issue 6

Issues

A novel machine learning-derived decision tree including uPA/PAI-1 for breast cancer care

Nathalie Reix
  • Corresponding author
  • Clinical Biologist, Laboratoire de Biochimie et Biologie Moléculaire, Hôpitaux Universitaires de Strasbourg, 1 place de l’Hôpital, Strasbourg, France
  • ICube UMR 7357, Université de Strasbourg/CNRS, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 4 rue Kirschleger, Strasbourg, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Massimo Lodi
  • Unité de Sénologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
  • Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stéphane Jankowski / Sébastien Molière
  • Service d’oncologie médicale, Centre Hospitalier Régional de Metz-Thionville, Hôpital de Mercy, Metz, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elisabeth Luporsi
  • Service d’oncologie médicale, Centre Hospitalier Régional de Metz-Thionville, Hôpital de Mercy, Metz, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Suzanne Leblanc
  • Laboratoire de Biochimie et Biologie Moléculaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
  • Service de Pathologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Louise Scheer / Issam Ibnouhsein / Julie-Charlotte Benabu / Victor Gabriele / Alberto Guggiola / Jean-Marc Lessinger
  • Laboratoire de Biochimie et Biologie Moléculaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marie-Pierre Chenard
  • Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch, France
  • Service de Pathologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fabien Alpy
  • Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jean-Pierre Bellocq / Karl Neuberger / Catherine Tomasetto
  • Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Carole Mathelin
  • Unité de Sénologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
  • Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch, France
  • Unité de Sénologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-12-20 | DOI: https://doi.org/10.1515/cclm-2018-1065

Abstract

Background

uPA and PAI-1 are breast cancer biomarkers that evaluate the benefit of chemotherapy (CT) for HER2-negative, estrogen receptor-positive, low or intermediate grade patients. Our objectives were to observe clinical routine use of uPA/PAI-1 and to build a new therapeutic decision tree integrating uPA/PAI-1.

Methods

We observed the concordance between CT indications proposed by a canonical decision tree representative of French practices (not including uPA/PAI-1) and actual CT prescriptions decided by a medical board which included uPA/PAI-1. We used a method of machine learning for the analysis of concordant and non-concordant CT prescriptions to generate a novel scheme for CT indications.

Results

We observed a concordance rate of 71% between indications proposed by the canonical decision tree and actual prescriptions. Discrepancies were due to CT contraindications, high tumor grade and uPA/PAI-1 level. Altogether, uPA/PAI-1 were a decisive factor for the final decision in 17% of cases by avoiding CT prescription in two-thirds of cases and inducing CT in other cases. Remarkably, we noted that in routine practice, elevated uPA/PAI-1 levels seem not to be considered as a sufficient indication for CT for N≤3, Ki 67≤30% tumors, but are considered in association with at least one additional marker such as Ki 67>14%, vascular invasion and ER-H score <150.

Conclusions

This study highlights that in the routine clinical practice uPA/PAI-1 are never used as the sole indication for CT. Combined with other routinely used biomarkers, uPA/PAI-1 present an added value to orientate the therapeutic choice.

Keywords: breast cancer; chemotherapy; machine learning; over- and under-treatment; survival; uPA/PAI-1

References

  • 1.

    Harris LN, Ismaila N, McShane LM, Andre F, Collyar DE, Gonzalez-Angulo AM, et al. Use of biomarkers to guide decisions on adjuvant systemic therapy for women with early-stage invasive breast cancer: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 2016;34:1134–50.CrossrefWeb of ScienceGoogle Scholar

  • 2.

    Harris L, Fritsche H, Mennel R, Norton L, Ravdin P, Taube S, et al. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 2007;25:5287–312.Web of ScienceCrossrefGoogle Scholar

  • 3.

    Sturgeon CM, Duffy MJ, Stenman UH, Lilja H, Brünner N, Chan DW, et al. National Academy of Clinical Biochemistry laboratory medicine practice guidelines for use of tumor markers in testicular, prostate, colorectal, breast, and ovarian cancers. Clin Chem 2008;54:e11–79.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 4.

    Molina R, Barak V, van Dalen A, Duffy MJ, Einarsson R, Gion M, et al. Tumor markers in breast cancer – European Group on Tumor Markers recommendations. Tumour Biol 2005;26:281–93.CrossrefGoogle Scholar

  • 5.

    Duffy MJ, Harbeck N, Nap M, Molina R, Nicolini A, Senkus E, et al. Clinical use of biomarkers in breast cancer: Updated guidelines from the European Group on Tumor Markers (EGTM). Eur J Cancer 2017;75:284–98.CrossrefWeb of ScienceGoogle Scholar

  • 6.

    Senkus E, Kyriakides S, Ohno S, Penault-Llorca F, Poortmans P, Rutgers E, et al. Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2015;26(Suppl 5):v8–30.PubMedCrossrefGoogle Scholar

  • 7.

    Institut national du cancer (INCa). Rapport intégral – UPA/PAI-1, ONCOTYPE DXtm, MAMMAPRINT® – Valeurs pronostique et prédictive pour une utilité clinique dans la prise en charge du cancer du sein. Collection Etat des lieux et des connaissances/Pratique clinique; 2014, http://www.e-cancer.fr/Expertises-et-publications/Catalogue-des-publications/Rapport-integral-UPA-PAI-1-ONCOTYPE-DXtm-MAMMAPRINT-R-Valeurs-pronostique-et-predictive-pour-une-utilite-clinique-dans-la-prise-en-charge-du-cancer-du-sein.

  • 8.

    Hanf V, Schütz F, Liedtke C, Thill M, AGO Breast Committee. AGO Recommendations for the Diagnosis and Treatment of Patients with Early Breast Cancer: Update 2015. Breast Care (Basel) 2015;10:189–97.CrossrefPubMedGoogle Scholar

  • 9.

    Saadoun H, Lamy PJ, Thezenas S, Pouderoux S, Bibeau F, Montels F, et al. Prognostic impact of the inclusion of uPA/PAI-1 tumor levels in the current adjuvant treatment decision-making for early breast cancer. Future Oncol 2014;10:195–209.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 10.

    Look MP, van Putten WL, Duffy MJ, Harbeck N, Christensen IJ, Thomssen C, et al. Pooled analysis of prognostic impact of urokinase-type plasminogen activator and its inhibitorPAI-1 in 8377 breast cancer patients. J Natl Cancer Inst 2002;94:116–28.CrossrefPubMedGoogle Scholar

  • 11.

    OncoLogiK, http://www.oncologik.fr/index.php/Interregion:Sein_(principes_de_prise_en_charge).

  • 12.

    OncoLogiK, http://www.oncologik.fr/index.php/Interregion:Sein_(principes_de_prise_en_charge)#Arbres_de_d.C3.A9cisions_selon_RH_et_HER2.

  • 13.

    Reix N, Malina C, Chenard MP, Bellocq JP, Delpous S, Molière S, et al. A prospective study to assess the clinical utility of serum HER2 extracellular domain in breast cancer with HER2 overexpression. Breast Cancer Res Treat 2016;160:249–59.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 14.

    Thike AA, Chng MJ, Fook-Chong S, Tan PH. Immunohistochemical expression of hormone receptors in invasive breast carcinoma: correlation of results of H-score with pathological parameters. Pathology 2001;33:21–5.PubMedCrossrefGoogle Scholar

  • 15.

    Borstnar S, Sadikov A, Mozina B, Cufer T. High levels of uPA and PAI-1 predict a good response to anthracyclines. Breast Cancer Res Treat 2010;121:615–24.CrossrefPubMedGoogle Scholar

  • 16.

    Jacobs VR, Augustin D, Wischnik A, Kiechle M, Hoess C, Steinkohl O, et al. Concordance rates of biomarkers uPA and PAI-1 results in primary breast cancer vs. consecutive tumor board decision and therapy performed in clinical hospital routine: Results of a prospective multi-center study at certified breast centers. Breast 2016;29:208–12.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 17.

    Vénat-Bouvet L, Fermeaux V, Leobon S, Saidi N, Monteil J, Mollard J, et al. Adjuvant chemotherapy in node-negative breast cancer: UPA/PAI-1 determinations for 163 cases. Anticancer Res 2014;34:1213–7.PubMedGoogle Scholar

  • 18.

    Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and regression trees. Belmont, CA: Wadsworth, 1984.Google Scholar

  • 19.

    Therneau T, Atkinson B, Ripley B. rpart: Recursive Partitioning and Regression Trees. R package version 4.1-10. https://cran.r-project.org/package=rpart; 2015.

  • 20.

    Kolben T, Augustin D, Armbrust R, Kolben TM, Degenhardt T, Burgmann M, et al. Impact of guideline-based use of uPA/PAI-1 on patient outcome in intermediate-risk early breast cancer. Breast Cancer Res Treat 2016;155:109–15.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 21.

    Mazouni C, Spyratos F, Romain S, Fina F, Bonnier P, Ouafik LH, et al. A nomogram to predict individual prognosis in node-negative breast carcinoma. Eur J Cancer 2012;48:2954–61.Web of SciencePubMedCrossrefGoogle Scholar

  • 22.

    Goldhirsch A, Ingle JN, Gelber RD, Coates AS, Thürlimann B, Senn HJ, et al. Thresholds for therapies: highlights of the St Gallen International Expert Consensus on the primary therapy of early breast cancer 2009. Ann Oncol 2009;20:1319–29.Web of ScienceCrossrefPubMedGoogle Scholar

  • 23.

    Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. J Am Med Assoc 2016;316:2402–10.CrossrefWeb of ScienceGoogle Scholar

  • 24.

    Gonçalves-Ribeiro S, Sanz-Pamplona R, Vidal A, Sanjuan X, Guillen Díaz-Maroto N, Soriano A, et al. Prediction of pathological response to neoadjuvant treatment in rectal cancer with a two-protein immunohistochemical score derived from stromal gene-profiling. Ann Oncol 2017;28:2160–8.CrossrefWeb of SciencePubMedGoogle Scholar

  • 25.

    Somashekhar SP, Sepúlveda MJ, Puglielli S, Norden AD, Shortliffe EH, Rohit Kumar C, et al. Watson for oncology and breast cancer treatment recommendations: agreement with an expert multidisciplinary tumor board. Ann Oncol 2018;29:418–23.CrossrefWeb of ScienceGoogle Scholar

  • 26.

    Coates AS, Winer EP, Goldhirsch A, Gelber RD, Gnant M, Piccart-Gebhart M, et al. Tailoring therapies--improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015. Ann Oncol 2015;26:1533–46.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 27.

    Viala M, Alexandre M, Thezenas S, Lamy PJ, Maran-Gonzalez A, Gutowski M, et al. Prognostic impact of the inclusion of uPA/PAI-1 for adjuvant treatment decision-making in ER+/Her2- pN0 early breast cancers. Breast Cancer Res Treat 2017;165:611–21.CrossrefPubMedWeb of ScienceGoogle Scholar

About the article

Corresponding author: Nathalie Reix, PhD, Clinical Biologist, Laboratoire de Biochimie et Biologie Moléculaire, Hôpitaux Universitaires de Strasbourg, 1 place de l’Hôpital, Strasbourg, France; and ICube UMR 7357, Université de Strasbourg/CNRS, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 4 rue Kirschleger, Strasbourg, France, Phone: 00 33 3 69 55 08 27; Fax: 00 33 3 69 55 18 85


Received: 2018-09-28

Accepted: 2018-11-06

Published Online: 2018-12-20

Published in Print: 2019-05-27


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: This work was supported by a French non-profit association “SEVE, Seins et Vie”.

Employment or leadership: Some authors are signing under the Quantmetry affiliation. Quantmetry is a private society developing applications of artificial intelligence.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.


Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), Volume 57, Issue 6, Pages 901–910, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/cclm-2018-1065.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in