Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Greaves, Ronda / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter

IMPACT FACTOR 2018: 3.638

CiteScore 2018: 2.44

SCImago Journal Rank (SJR) 2018: 1.191
Source Normalized Impact per Paper (SNIP) 2018: 1.205

See all formats and pricing
More options …
Volume 57, Issue 8


Uncovering the clinical impact of kallikrein-related peptidase 5 (KLK5) mRNA expression in the colorectal adenoma-carcinoma sequence

Georgia Papachristopoulou
  • Department of Pathology, “Saint Savvas” Cancer Hospital of Athens, Athens, Greece
  • Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Apostolos Malachias / Marina Devetzi
  • Department of Cellular Physiology, G. Papanicolaou Research Center of Oncology, “Saint Savvas” Cancer Hospital of Athens, Athens, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Evdoxia KamouzaORCID iD: https://orcid.org/0000-0003-4453-930X / Andreas ScorilasORCID iD: https://orcid.org/0000-0003-2427-4949 / Dimitris Xynopoulos / Maroulio Talieri
  • Corresponding author
  • Department of Cellular Physiology, G. Papanicolaou Research Center of Oncology, “Saint Savvas” Cancer Hospital of Athens, Athens, Greece
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-02-13 | DOI: https://doi.org/10.1515/cclm-2018-1010



Kallikrein-related peptidases (KLKs) are a subgroup of serine proteases located on chromosome 19q13.3. Most KLKs have been extensively studied as potential biomarkers for several carcinomas and other diseases. KLK5 was originally identified from a keratinocyte library, and its enzyme was purified from the stratum corneum of human skin. KLK5 was shown to be differentially expressed in a variety of endocrine tumors, although it is not as yet examined widely in colorectal cancer (CRC).


In this study, we quantitatively assessed the mRNA expression status of KLK5 in 197 colorectal tissues from 133 patients (70 cancerous and their paired normal colonic mucosa for 64 of them, as well as 63 colorectal adenomas) by quantitative real-time PCR (qPCR) using TaqMan probes. Statistical analysis evaluated the results.


It was shown that KLK5 expression is reduced following the histologically non-cancerous-adenoma sequence (p<0.001), whereas it is increased during the sequence adenoma-carcinoma (p<0.001). Furthermore, KLK5 positive expression is associated with positive nodal status (p=0.022), advanced tumor stage (p=0.038) and high histological grade (p=0.033). Cox univariate analysis revealed that KLK5 positive expression is associated with disease-free survival (DFS) (p=0.028) and overall survival (OS) of patients (p=0.048). Kaplan-Meyer survival models showed that patients with positive KLK5 expression have lower DFS (p=0.009) and OS (p=0.019). Receiver operating characteristic (ROC) analysis demonstrated for first time that KLK5 expression had significant discriminatory values between cancer and adenoma tissues (area under the curve [AUC] 0.77; 95% confidence interval [CI]=0.69–0.85, p=0.03).


KLK5 mRNA expression may be useful for the differentiation of CRC from colorectal adenoma and represents a potential unfavorable prognostic biomarker for CRC.

Keywords: colon cancer; gastrointestinal cancer; molecular tumor markers; prognosis; prognostic biomarkers; quantitative real-time PCR (qPCR)


  • 1.

    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015;65:87–108.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 2.

    Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, et al. Genetic alterations during colorectal-tumor development. N Engl J Med 1988;319:525–32.CrossrefPubMedGoogle Scholar

  • 3.

    Pietras K, Ostman A. Hallmarks of cancer: interactions with the tumor stroma. Experimental Cell Res 2010;316:1324–31.CrossrefWeb of ScienceGoogle Scholar

  • 4.

    Lopez-Otin C, Matrisian LM. Emerging roles of proteases in tumour suppression. Nat Rev Cancer 2007;7:800–8.Web of SciencePubMedCrossrefGoogle Scholar

  • 5.

    Yousef GM, Chang A, Scorilas A, Diamandis EP. Genomic organization of the human kallikrein gene family on chromosome 19q13.3-q13.4. Biochem Biophys Res Commun 2000;276:125–33.CrossrefPubMedGoogle Scholar

  • 6.

    Borgono CA, Diamandis EP. The emerging roles of human tissue kallikreins in cancer. Nat Rev Cancer 2004;4:876–90.CrossrefPubMedGoogle Scholar

  • 7.

    Adamopoulos PG, Tsiakanikas P, Scorilas A. Kallikrein-related peptidases and associated microRNAs as promising prognostic biomarkers in gastrointestinal malignancies. Biol Chem 2018;399:821–36.Web of ScienceCrossrefPubMedGoogle Scholar

  • 8.

    Kontos CK, Scorilas A. Kallikrein-related peptidases (KLKs): a gene family of novel cancer biomarkers. Clin Chem Lab Med 2012;50:1877–91.Web of SciencePubMedGoogle Scholar

  • 9.

    Kontos CK, Chantzis D, Papadopoulos IN, Scorilas A. Kallikrein-related peptidase 4 (KLK4) mRNA predicts short-term relapse in colorectal adenocarcinoma patients. Cancer Lett 2013;330:106–12.Web of SciencePubMedCrossrefGoogle Scholar

  • 10.

    Devetzi M, Trangas T, Scorilas A, Xynopoulos D, Talieri M. Parallel overexpression and clinical significance of kallikrein-related peptidases 7 and 14 (KLK7KLK14) in colon cancer. Thromb Haemost 2013;109:716–25.PubMedCrossrefGoogle Scholar

  • 11.

    Alexopoulou DK, Kontos CK, Christodoulou S, Papadopoulos IN, Scorilas A. KLK11 mRNA expression predicts poor disease-free and overall survival in colorectal adenocarcinoma patients. Biomark Med 2014;8:671–85.Web of ScienceCrossrefPubMedGoogle Scholar

  • 12.

    Christodoulou S, Alexopoulou DK, Kontos CK, Scorilas A, Papadopoulos IN. Kallikrein-related peptidase-6 (KLK6) mRNA expression is an independent prognostic tissue biomarker of poor disease-free and overall survival in colorectal adenocarcinoma. Tumour Biol 2014;35:4673–85.CrossrefPubMedGoogle Scholar

  • 13.

    Kontos CK, Mavridis K, Talieri M, Scorilas A. Kallikrein-related peptidases (KLKs) in gastrointestinal cancer: mechanistic and clinical aspects. Thromb Haemost 2013;110:450–7.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 14.

    Vakrakou A, Devetzi M, Papachristopoulou G, Malachias A, Scorilas A, Xynopoulos D, et al. Kallikrein-related peptidase 6 (KLK6) expression in the progression of colon adenoma to carcinoma. Biol Chem 2014;395:1105–17.Web of SciencePubMedGoogle Scholar

  • 15.

    Bayani J, Diamandis EP. The physiology and pathobiology of human kallikrein-related peptidase 6 (KLK6). Clin Chem Lab Med 2011;50:211–33.PubMedWeb of ScienceGoogle Scholar

  • 16.

    Michael IP, Sotiropoulou G, Pampalakis G, Magklara A, Ghosh M, Wasney G, et al. Biochemical and enzymatic characterization of human kallikrein 5 (hK5), a novel serine protease potentially involved in cancer progression. J Biol Chem 2005;280:14628–35.PubMedCrossrefGoogle Scholar

  • 17.

    Brattsand M, Stefansson K, Lundh C, Haasum Y, Egelrud T. A proteolytic cascade of kallikreins in the stratum corneum. J Invest Dermatol 2005;124:198–203.CrossrefPubMedGoogle Scholar

  • 18.

    Watson AJ, Duckworth CA, Guan Y, Montrose MH. Mechanisms of epithelial cell shedding in the Mammalian intestine and maintenance of barrier function. Ann N Y Acad Sci 2009;1165:135–42.PubMedCrossrefGoogle Scholar

  • 19.

    Loktionov A. Cell exfoliation in the human colon: myth, reality and implications for colorectal cancer screening. Int J Cancer 2007;120:2281–9.CrossrefWeb of SciencePubMedGoogle Scholar

  • 20.

    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 2001;25:402–8.CrossrefGoogle Scholar

  • 21.

    Kheirelseid EA, Chang KH, Newell J, Kerin MJ, Miller N. Identification of endogenous control genes for normalisation of real-time quantitative PCR data in colorectal cancer. BMC Mol Biol 2010;11:12.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 22.

    Altman DG, Lausen B, Sauerbrei W, Schumacher M. Dangers of using “optimal” cutpoints in the evaluation of prognostic factors. J Natl Cancer Inst 1994;86:829–35.PubMedCrossrefGoogle Scholar

  • 23.

    Shaw JL, Diamandis EP. Distribution of 15 human kallikreins in tissues and biological fluids. Clin Chem 2007;53:1423–32.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 24.

    Adamopoulos PG, Kontos CK, Scorilas A. Molecular cloning of novel transcripts of human kallikrein-related peptidases 5, 6, 7, 8 and 9 (KLK5 – KLK9), using Next-generation sequencing. Sci Rep 2017;7:17299.Web of SciencePubMedCrossrefGoogle Scholar

  • 25.

    Kurlender L, Borgono C, Michael IP, Obiezu C, Elliott MB, Yousef GM, et al. A survey of alternative transcripts of human tissue kallikrein genes. Biochim Biophys Acta 2005;1755:1–14.PubMedGoogle Scholar

  • 26.

    Adamopoulos PG, Kontos CK, Scorilas A. Identification and molecular cloning of novel transcripts of the human kallikrein-related peptidase 10 (KLK10) gene using next-generation sequencing. Biochem Biophys Res Commun 2017;487:776–81.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 27.

    Adamopoulos PG, Kontos CK, Scorilas A. Discovery of novel transcripts of the human tissue kallikrein (KLK1) and kallikrein-related peptidase 2 (KLK2) in human cancer cells, exploiting Next-Generation Sequencing technology. Genomics 2018. pii: S0888-7543(18)30206-4. doi: 10.1016/j.ygeno.2018.03.022. [Epub ahead of print]Web of ScienceGoogle Scholar

  • 28.

    Adamopoulos PG, Kontos CK, Scorilas A. Novel splice variants of the human kallikrein-related peptidases 11 (KLK11) and 12 (KLK12), unraveled by next-generation sequencing technology. Biol Chem 2018;399:1065–71.Web of ScienceCrossrefPubMedGoogle Scholar

  • 29.

    Adamopoulos PG, Kontos CK, Tsiakanikas P, Scorilas A. Identification of novel alternative splice variants of the BCL2L12 gene in human cancer cells using next-generation sequencing methodology. Cancer Lett 2016;373:119–29.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 30.

    Kontos CK, Scorilas A. Molecular cloning of novel alternatively spliced variants of BCL2L12, a new member of the BCL2 gene family, and their expression analysis in cancer cells. Gene 2012;505:153–66.CrossrefWeb of SciencePubMedGoogle Scholar

  • 31.

    Adamopoulos PG, Kontos CK, Diamantopoulos MA, Scorilas A. Molecular cloning of novel transcripts of the adaptor-related protein complex 2 alpha 1 subunit (AP2A1) gene, using Next-Generation Sequencing. Gene 2018;678:55–64CrossrefWeb of SciencePubMedGoogle Scholar

  • 32.

    Adamopoulos PG, Raptis GD, Kontos CK, Scorilas A. Discovery and expression analysis of novel transcripts of the human SR-related CTD-associated factor 1 (SCAF1) gene in human cancer cells using Next-Generation Sequencing. Gene 2018;670:155–65.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 33.

    de Veer SJ, Furio L, Swedberg JE, Munro CA, Brattsand M, Clements JA, et al. Selective substrates and inhibitors for kallikrein-related peptidase 7 (KLK7) shed light on KLK proteolytic activity in the stratum corneum. J Invest Dermatol 2017;137:430–9.CrossrefWeb of SciencePubMedGoogle Scholar

  • 34.

    Sidiropoulos KG, White NM, Bui A, Ding Q, Boulos P, Pampalakis G, et al. Kallikrein-related peptidase 5 induces miRNA-mediated anti-oncogenic pathways in breast cancer. Oncoscience 2014;1:709–24.CrossrefPubMedGoogle Scholar

  • 35.

    Pampalakis G, Obasuyi O, Papadodima O, Chatziioannou A, Zoumpourlis V, Sotiropoulou G. The KLK5 protease suppresses breast cancer by repressing the mevalonate pathway. Oncotarget 2014;5:2390–403.PubMedWeb of ScienceGoogle Scholar

  • 36.

    Jiang R, Shi Z, Johnson JJ, Liu Y, Stack MS. Kallikrein-5 promotes cleavage of desmoglein-1 and loss of cell-cell cohesion in oral squamous cell carcinoma. J Biol Chem 2011;286:9127–35.CrossrefWeb of SciencePubMedGoogle Scholar

  • 37.

    Johnson JJ, Miller DL, Jiang R, Liu Y, Shi Z, Tarwater L, et al. Protease-activated receptor-2 (PAR-2)-mediated Nf-kappaB activation suppresses inflammation-associated tumor suppressor microRNAs in oral squamous cell carcinoma. J Biol Chem 2016;291:6936–45.CrossrefPubMedGoogle Scholar

  • 38.

    Chow TF, Crow M, Earle T, El-Said H, Diamandis EP, Yousef GM. Kallikreins as microRNA targets: an in silico and experimental-based analysis. Biol Chem 2008;389:731–8.Web of ScienceGoogle Scholar

  • 39.

    Aggarwal N, Sloane BF. Cathepsin B: multiple roles in cancer. Proteomics Clin Appl 2014;8:427–37.CrossrefWeb of SciencePubMedGoogle Scholar

  • 40.

    Talieri M, Li L, Zheng Y, Alexopoulou DK, Soosaipillai A, Scorilas A, et al. The use of kallikrein-related peptidases as adjuvant prognostic markers in colorectal cancer. Br J Cancer 2009;100:1659–65.Web of SciencePubMedCrossrefGoogle Scholar

  • 41.

    Kerimis D, Kontos CK, Christodoulou S, Papadopoulos IN, Scorilas A. Elevated expression of miR-24-3p is a potentially adverse prognostic factor in colorectal adenocarcinoma. Clin Biochem 2017;50:285–92.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 42.

    Rapti SM, Kontos CK, Papadopoulos IN, Scorilas A. Enhanced miR-182 transcription is a predictor of poor overall survival in colorectal adenocarcinoma patients. Clin Chem Lab Med 2014;52:1217–27.PubMedWeb of ScienceGoogle Scholar

  • 43.

    Tsiakanikas P, Kontos CK, Kerimis D, Papadopoulos IN, Scorilas A. High microRNA-28-5p expression in colorectal adenocarcinoma predicts short-term relapse of node-negative patients and poor overall survival of patients with non-metastatic disease. Clin Chem Lab Med 2018;56:990–1000.Web of ScienceCrossrefPubMedGoogle Scholar

  • 44.

    Rapti SM, Kontos CK, Papadopoulos IN, Scorilas A. High miR-96 levels in colorectal adenocarcinoma predict poor prognosis, particularly in patients without distant metastasis at the time of initial diagnosis. Tumour Biol 2016;37:11815–24.CrossrefPubMedGoogle Scholar

  • 45.

    Kontos CK, Tsiakanikas P, Avgeris M, Papadopoulos IN, Scorilas A. miR-15a-5p, A novel prognostic biomarker, predicting recurrent colorectal adenocarcinoma. Mol Diagn Ther 2017;21:453–64.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 46.

    Rapti SM, Kontos CK, Christodoulou S, Papadopoulos IN, Scorilas A. miR-34a overexpression predicts poor prognostic outcome in colorectal adenocarcinoma, independently of clinicopathological factors with established prognostic value. Clin Biochem 2017;50:918–24.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 47.

    Adamopoulos PG, Kontos CK, Rapti SM, Papadopoulos IN, Scorilas A. miR-224 overexpression is a strong and independent prognosticator of short-term relapse and poor overall survival in colorectal adenocarcinoma. Int J Oncol 2015;46:849–59.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 48.

    Diamantopoulos MA, Kontos CK, Kerimis D, Papadopoulos IN, Scorilas A. Upregulated miR-16 expression is an independent indicator of relapse and poor overall survival of colorectal adenocarcinoma patients. Clin Chem Lab Med 2017;55: 737–47.Web of SciencePubMedGoogle Scholar

  • 49.

    Sterlacci W, Sioulas AD, Veits L, Gonullu P, Schachschal G, GrothS, et al. 22-gauge core vs 22-gauge aspiration needle for endoscopic ultrasound-guided sampling of abdominal masses. World J Gastroenterol 2016;22:8820–30.CrossrefWeb of SciencePubMedGoogle Scholar

  • 50.

    Ferraro A, Kontos CK, Boni T, Bantounas I, Siakouli D, Kosmidou V, et al. Epigenetic regulation of miR-21 in colorectal cancer: ITGB4 as a novel miR-21 target and a three-gene network (miR-21-ITGBeta4-PDCD4) as predictor of metastatic tumor potential. Epigenetics 2014;9:129–41.CrossrefGoogle Scholar

About the article

Corresponding author: Dr. Maroulio Talieri, Department of Cellular Physiology, G. Papanicolaou Research Center of Oncology, “Saint Savvas” Cancer Hospital of Athens, 171 Alexandras Avenue, 11522 Athens, Greece, Phone: +30 2106424163, Fax: +30 2106424163, E-mail: litsa.talieri@yahoo.com


Received: 2018-09-13

Accepted: 2019-01-08

Published Online: 2019-02-13

Published in Print: 2019-07-26

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), Volume 57, Issue 8, Pages 1251–1260, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/cclm-2018-1010.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Florian Peters and Christoph Becker-Pauly
Cancer and Metastasis Reviews, 2019

Comments (0)

Please log in or register to comment.
Log in