Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Greaves, Ronda / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter

IMPACT FACTOR 2018: 3.638

CiteScore 2018: 2.44

SCImago Journal Rank (SJR) 2018: 1.191
Source Normalized Impact per Paper (SNIP) 2018: 1.205

See all formats and pricing
More options …
Volume 54, Issue 11


Evaluation of Mindray BC-6800 body fluid mode for automated cerebrospinal fluid cell counting

Sabrina Buoro
  • Corresponding author
  • Clinical Chemistry Laboratory Hospital Papa Giovanni XXIII, Piazza OMS, 1, 24128 Bergamo, Italy, Phone: (039) 035-2674550, Fax: (039) 035-2674939
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michela Seghezzi / Tommaso Mecca / Mauro Vavassori / Alberto Crippa / Antonio La Gioia
Published Online: 2016-04-21 | DOI: https://doi.org/10.1515/cclm-2015-1092



Cellular analysis in cerebrospinal fluid (CSF) provides important diagnostic information in various medical conditions. The aim of this study was to evaluate the application of Mindray BC-6800 body fluid (BF) mode in cytometric analysis of CSF compared to light microscopy (LM).


One hundred and twenty-nine consecutive CSF samples were analyzed by BC-6800-BF mode as well as by LM. The study also included limits of blank (LoB), limit of detection (LoD), limit of quantitation (LoQ), carryover and linearity.


White blood cells LoQ was 4.0×106 cells/L. Linearity was good and carryover was negligible. As for the total and white blood cells, the BC-6800-BF parameters vs. LM showed both bias ranged from –10.28 to 0.06×106 cells/L. Polymorphonuclear and mononuclear cells ranged from 6.64 to 10.90%. For white blood cell the diagnostic agreement was 93% at the cut-off >5.0×106 cells/L, and for polymorphonuclear and mononuclear at the cut-off >50% was 91% and 92%, respectively.


BC-6800-BF offers rapid and accurate counts in clinically relevant concentration ranges, replacing LM for most samples. However, in samples with abnormal cell counts or with abnormal white blood cell differential scattergrams the need to microscopic review for a correct clinical outcome remains.

Keywords: automated cell counting; cerebrospinal fluid; light microscopy; Mindray BC-6800


  • 1.

    Fleming C, Russcher H, Lindemans J, de Jonge R. Clinical relevance and contemporary methods for counting blood cells in body fluids suspected of inflammatory disease. Clin Chem Lab Med 2015;53:1689–706.Google Scholar

  • 2.

    Bignardi GE. Flow cytometry for the microscopy of body fluids in patients with suspected infection. J Clin Pathol 2015;68:870–8.Google Scholar

  • 3.

    Sandhaus LM. Body fluid cell counts by automated methods. Clin Lab Med 2015;35:93–103.Google Scholar

  • 4.

    De Luca GC, Bartleson JD. When and how to investigate the patient with headache. Semin Neurol 2010;30:131–44.Google Scholar

  • 5.

    Fitch MT, Abrahamian FM, Moran GJ, Talan DA. Emergency department management of meningitis and encephalitis. Infect Dis Clin North Am 2008;22:33–52.Google Scholar

  • 6.

    de Graaf MT, de Jongste AH, Kraan J, Boonstra JG, Sillevis Smitt PA, Gratama JW. Flow cytometric characterization of cerebrospinal fluid cells. Cytometry Part B Clin Cytom 2011;80:271–81.Google Scholar

  • 7.

    Clinical and Laboratory Standard Institute. Body fluid analysis for cellular composition; approved guidelines. CLSI document H56-A. Wayne, PA: Clinical and Laboratory Standard Institute, 2006.Google Scholar

  • 8.

    Zimmermann M, Otto C, Gonzalez JB, Prokop S, Ruprecht K. Cellular origin and diagnostic significance of high-fluorescent cells in cerebrospinal fluid detected by the XE-5000 hematology analyzer. Int J Lab Hematol 2013;35:580–8.Google Scholar

  • 9.

    Cho YU, Chi HS, Park SH, Jang S, Kim YJ, Park CJ. Body fluid cellular analysis using the Sysmex XN-2000 automatic hematology analyzer: focusing on malignant samples. Int J Lab Hematol 2015;37:346–56.Google Scholar

  • 10.

    Mahieu S, Vertessen F, Van der Planken M. Evaluation of ADVIA 120 CSF assay (Bayer) vs. chamber counting of cerebrospinal fluid specimens. Clin Lab Haematol 2004;26:195–9.Google Scholar

  • 11.

    Zimmermann M, Weimann A. Automated vs. manual cerebrospinal fluid cell counts: a work and cost analysis comparing the Sysmex XE-5000 and the Fuchs-Rosenthal manual counting chamber. Int J Lab Hematol 2011;33:629–37.Google Scholar

  • 12.

    Kresie L, Benavides D, Bollinger P, Walters J, Pierson D, Richmond T, et al. Perfomance evaluation of body fluids on the Sysmex XE-2100 series automated hematology analyzer. Lab Hematol 2005;11:24–30.Google Scholar

  • 13.

    Brown W, Keeney M, Chin-Yee I, Johnson K, Lantis K, Finn W et al. Validation of body fluid analysis on the Coulter LH 750. Lab Hematol 2003;9:155–9.Google Scholar

  • 14.

    Hoffmann JJ, Jansen WC. Automated counting of cells in cerebrospinal fluid using the Celldyn-4000 haematology analyzer. Clin Chem Lab Med 2002;44:1168–73.Google Scholar

  • 15.

    De Smet D, Van Moer G, Martens GA, Nanos N, Smet L, Jochmans K, et al. Use of the Cell-Dyn Sapphire hematology analyzer for automated counting of blood cells in body fluids. Am J Clin Pathol 2010;133:291–99.Google Scholar

  • 16.

    Boer K, Deufel T, Reinhofer M. Evaluation of the XE-5000 for the automated analysis of blood cells in cerebrospinal fluid. Clin Biochem 2009;42:684–91.Google Scholar

  • 17.

    de Jong R, Brower R, de Graaf MT, Luitwieler RL, Fleming C, de Frankrijker-Merkestijn M, et al. Evaluation of the new body fluid mode on the Sysmex XE-5000 for counting leukocytes and erythrocytes in cerebrospinal fluid and other body fluids. Clin Chem Lab Med 2010;48:665–75.Google Scholar

  • 18.

    Pernè A, Hainfellner JA, Womastek I, Haushofer A, Szekeres T, Schwarzinger I. Performance evaluation of the Sysmex XE-5000 hematology analyzer for white blood cell analysis in cerebrospinal fluid. Arch Pathol Lab Med 2012;19:194–8.Google Scholar

  • 19.

    Li A, Gronlund E, Brattsand G. Autoamted white blood cell counts in cerebrospinal fluid using the body fluid mode on the platform Sysmex XE-5000. Scand J Clin Lab Invest 2014;74:673–80.Google Scholar

  • 20.

    Letho TM, Leskinen P, Hedberg P, Vaskivuo TE. Evaluation of the Sysmex XT-4000i for the automated body fluid analysis. Int J Lab Hematol 2014;36:114–23.Google Scholar

  • 21.

    Fleming C, Brouwer R, Lindemans J, de Jong R. Validation of the body fluid module on the new Sysmex XN-1000 for counting blood cells in cerebrospinal fluid and other body fluids. Clin Chem Lab Med 2012;50:1791–8.Google Scholar

  • 22.

    Zur B, Eichhorn L, Albers E, Stoffel-Wagner B. Evaluation of 2 hematology analyzers in body fluid mode versus flow cytometry immunophenotyping of mainly neurosurgical cerebrospinal fluid samples. J Neurol Surg A Cent Eur Neurosurg 2012;73:93–8.Google Scholar

  • 23.

    Strik H, Luthe H, Nagel I, Ehrilch B, Bahr M. Automated cerebrospinal fluid cytology. Limitation and reasonable applications. Anal Quant Cytol Histol 2005;27:167–73.Google Scholar

  • 24.

    Nanos NE, Delanghe JR. Evaluation of Sysmex UF-1000i for use in cerebrospinal fluid analysis. Clinica Chimica Acta 2008;392:30–3.Google Scholar

  • 25.

    Buoro S, Ottomano C, Appassiti S, Gherardi P, Alessio MG, Crippa A, et al. Analytical and clinical evaluation of Sysmex UF1000i for automated screening of cerebrospinal fluids. J Med Biochem 2013;32:1–6.Google Scholar

  • 26.

    Buoro S, Apassiti Esposito S, Alessio M, Crippa A, Ottomano C, Lippi G. Automated cerebrospinal fluid cell counts using the new body fluid mode of Sysmex UF-1000i. J Clin Lab Anal 2015; doi: 10.1002/jcla.21866.CrossrefGoogle Scholar

  • 27.

    Glasser L, Murphy CA, Machan JT. The clinical reliability of automated cerebrospinal fluid cell counts on the Beckman-Coulter LH750 and Iris iQ200. Am J Clin Pathol 2009;131:58–63.Google Scholar

  • 28.

    Walker TJ, Nelson LD, Dunphy BW, Anderson DM, Kickler TS. Comparative evaluation of the Iris iQ200 body fluid module with manual hemacytometer count. Am J Clin Pathol 2009;131:333–8.Google Scholar

  • 29.

    Buoro S, Mecca T, Azzarà G, Seghezzi M, Vavassori M, Crippa A et al. Mindray BC-6800 automated body fluid mode cell counts on pleural and ascitic fluids. Int J Lab Hematol 2016;38:90–101.Google Scholar

  • 30.

    Lippi G, Cattabiani C, Benegiamo A, Gennari D, Pavesi F, Caleffi A, et al. Evaluation of white blood cell count in peritoneal fluid with five different hemocytometers. Clin Biochem 2013;46:173–6.Google Scholar

  • 31.

    Bourner G, De La Salle B, George T, Tabe Y, Baum H, Culp N, et al. ICSH guidelines for the verification and performance of automated cell counters for body fluids. Int J Lab Hematol 2014;36:598–612.Google Scholar

  • 32.

    Briggs C, Culp N, Davis B, D’onofrio G, Zini G, Machin SJ. ICSH guidelines for the evaluation of blood cell analysers including those used for differential leucocyte and reticulocyte counting Int. Jnl Lab Hematol 2014;36:613–27.Google Scholar

  • 33.

    Clinical and Laboratory Standards Institute. Reference Leukocyte (WBC) Differential Count (Proportional) and Evaluation of instrumental Methods; Approved Guideline – second edition. CLSI document H20-A2. Wayne, PA: Clinical and Laboratory Standards Institute, 2010.Google Scholar

  • 34.

    Clinical and Laboratory Standards Institute. Evaluation of Detection Capability for Clinical Laboratory Measurement Procedures; Approved guideline – second edition. CLSI document EP17-A2. Wayne, PA: Clinical Laboratory Standards Institute, 2012.Google Scholar

  • 35.

    Clinical and Laboratory Standard Institute. Evaluation of the linearity of quantitative measurement procedures: a statistical approach; Approved Guideline. CLSI document EP06-A. Wayne, PA: Clinical and Laboratory Standard Institute, 2003.Google Scholar

  • 36.

    Bremell D, Mattsson N, Wallin F, Henriksson J, Wall M, Blennow K, et al. Automated cerebrospinal fluid cell count-new reference ranges and evaluation of its clinical use in central nervous system infections. Clin Biochem 2014;47:25–30.Google Scholar

  • 37.

    Sandhaus LM, Ciarlini P, Kidric D, Dillman C, O’Riordan M. Automated cerebrospinal fluid cell counts using the Sysmex XE-5000: is it time for new reference ranges? Am J Clin Pathol 2010;134:734–8.Google Scholar

  • 38.

    Omuse G, Makau P. Interference of cerebrospinal fluid white blood cell counts performed on the Sysmex XT-4000i by yeast and bacteria. Int J Lab Hematol 2013;35:e5–7.Google Scholar

  • 39.

    Kim HR, Park BR, Lee MK. Effects of bacteria and yeast on WBC counting in three automated hematology counters. Ann Hematol 2008;87:557–62.Google Scholar

  • 40.

    Buoro S, Appassiti Esposito S, Vavassori M, Mecca T, Ottomano C, Dominoni P, et al. Reflex testing rules for cell count and differentiation of nucleated elements in pleural and ascitic fluids on Sysmex XE-5000. J Lab Autom 2016;21:297–304.Google Scholar

  • 41.

    Buoro S, Mecca T, Azzarà G, Seghezzi M, Dominoni P, Crippa A, et al. Cell Population Data and reflex testing rules of cell analysis in pleural and ascitic fluids using body fluid mode on Sysmex XN-9000. Clin Chim Acta 2016;452:92–8.Google Scholar

About the article

Received: 2015-11-08

Accepted: 2016-03-04

Published Online: 2016-04-21

Published in Print: 2016-11-01

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), Volume 54, Issue 11, Pages 1799–1810, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/cclm-2015-1092.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

E. A. Hod, C. Brugnara, M. Pilichowska, L. M. Sandhaus, H. S. Luu, S. K. Forest, J. C. Netterwald, G. M. Reynafarje, and A. Kratz
International Journal of Laboratory Hematology, 2017
S. Buoro, B. Peruzzi, A. Fanelli, M. Seghezzi, B. Manenti, M. Lorubbio, T. Biagioli, S. Nannini, C. Ottomano, and G. Lippi
International Journal of Laboratory Hematology, 2017
Michela Seghezzi, Barbara Manenti, Giulia Previtali, Maria Grazia Alessio, Paola Dominoni, and Sabrina Buoro
Clinica Chimica Acta, 2017, Volume 473, Page 133
S. Buoro, M. Seghezzi, B. Manenti, T. Mecca, E. Candiago, M. Vidali, C. Ottomano, C.C. Castelli, R. Ferrari, G. Zappalà, and G. Lippi
International Journal of Laboratory Hematology, 2017, Volume 39, Number 3, Page 337
Michela Seghezzi, Sabrina Buoro, Barbara Manenti, Tommaso Mecca, Roberto Ferrari, Giorgio Zappalà, Claudio Carlo Castelli, Fiamma Balboni, Paola Pezzati, Cosimo Ottomano, and Giuseppe Lippi
Clinica Chimica Acta, 2016, Volume 462, Page 41

Comments (0)

Please log in or register to comment.
Log in