Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Greaves, Ronda / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter


IMPACT FACTOR 2018: 3.638

CiteScore 2018: 2.44

SCImago Journal Rank (SJR) 2018: 1.191
Source Normalized Impact per Paper (SNIP) 2018: 1.205

Online
ISSN
1437-4331
See all formats and pricing
More options …
Volume 57, Issue 9

Issues

Subcutaneous adipose tissue distribution and telomere length

Harald Mangge
  • Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wilfried RennerORCID iD: https://orcid.org/0000-0002-6199-4382 / Gunter Almer
  • Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hans-Jürgen Gruber
  • Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sieglinde Zelzer
  • Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Reinhard Moeller
  • Otto Loewi Research Center (for Vascular Biology, Immunology and Inflammation), Medical University of Graz, Graz, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Renate Horejsi
  • Otto Loewi Research Center (for Vascular Biology, Immunology and Inflammation), Medical University of Graz, Graz, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Markus Herrmann
  • Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-03-26 | DOI: https://doi.org/10.1515/cclm-2018-0801

Abstract

Background

Overweight and obese individuals have a reduced life expectancy due to cardiovascular disease (CVD), type 2 diabetes, stroke and cancer. Systemic inflammation and premature telomere shortening have been discussed as potential mechanisms linking these conditions. We investigated the relation of subcutaneous adipose tissue (SAT) distribution to leukocyte relative telomere length (RTL).

Methods

We measured RTL in 375 participants of the observational STYJOBS/EDECTA cohort (ClinicalTrials.gov Identifier NCT00482924) using a qPCR based method. SAT distribution was determined by lipometry yielding a percent body fat value and SAT thicknesses at 15 standardized locations across the entire body. A correlation analysis between RTL, age, sex, lipometry data and conventional body measures (body mass index [BMI], waist-, hip circumference, waist-to-hip ratio, waist-to-height ratio) was calculated. The strongest determinants of RTL were determined by a stepwise multiple regression analysis.

Results

RTL was not associated with age or sex. RTL was significantly negatively correlated with BMI, percent body fat, waist-, hip circumference and waist-to-height ratio. Furthermore, RTL correlated with SAT at the following locations: neck, triceps, biceps, upper back, front chest, lateral chest, upper abdomen, lower abdomen, lower back, hip, front thigh, lateral thigh, rear thigh and calf. Stepwise regression analysis revealed nuchal and hip SAT as the strongest predictors of RTL. No significant association was seen between RTL and waist-to-hip ratio.

Conclusions

RTL is negatively associated with parameters describing body fat composure. Nuchal and hip SAT thicknesses are the strongest predictors of RTL. Central obesity appears to correlate with premature genomic aging.

Keywords: BMI; leukocyte telomere length; obesity; subcutaneous adipose tissue distribution

References

  • 1.

    Maffetone PB, Rivera-Dominguez I, Laursen PB. Overfat and underfat: new terms and definitions long overdue. Front Pub Health 2016;4:279.Google Scholar

  • 2.

    Tafeit E, Horejsi R, Pieber TR, Roller RE, Schnedl WJ, Wallner SJ, et al. Subcutaneous fat patterns in type-2 diabetic men and healthy controls. Coll Antropol 2008;32:607–14.PubMedGoogle Scholar

  • 3.

    Mangge H, Almer G, Truschnig-Wilders M, Schmidt A, Gasser R, Fuchs D. Inflammation, adiponectin, obesity and cardiovascular risk. Curr Med Chem 2010;17:4511–20.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 4.

    Bluher M. Fat tissue and long life. Obes Facts 2008;1:176–82.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 5.

    Stohr BA, Xu L, Blackburn EH. The terminal telomeric DNA sequence determines the mechanism of dysfunctional telomere fusion. Mol Cell 2010;39:307–14.Web of SciencePubMedCrossrefGoogle Scholar

  • 6.

    Lakowa N, Trieu N, Flehmig G, Lohmann T, Schon MR, Dietrich A, et al. Telomere length differences between subcutaneous and visceral adipose tissue in humans. Biochem Biophys Res Commun 2015;457:426–32.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 7.

    Park Y, Peterson LL, Colditz GA. The plausibility of obesity paradox in cancer-point. Cancer Res 2018;78:1898–903.CrossrefPubMedGoogle Scholar

  • 8.

    Hall ME. Body mass index and heart failure mortality: more is less? JACC Heart Fail 2018;6:243–5.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 9.

    Abramowitz MK, Hall CB, Amodu A, Sharma D, Androga L, Hawkins M. Muscle mass, BMI, and mortality among adults in the United States: a population-based cohort study. PLoS One 2018;13:e0194697.CrossrefWeb of SciencePubMedGoogle Scholar

  • 10.

    Revesz D, Milaneschi Y, Verhoeven JE, Lin J, Penninx BW. Longitudinal associations between metabolic syndrome components and telomere shortening. J Clin Endocrinol Metab 2015;100:3050–9.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 11.

    Wulaningsih W, Kuh D, Wong A, Hardy R. Adiposity, telomere length, and telomere attrition in midlife: the 1946 British birth cohort. J Gerontol A Biol Sci Med Sci 2018;73:966–72.CrossrefPubMedGoogle Scholar

  • 12.

    Yang M, Jiang P, Jin C, Wang J. Longer telomere length and its association with lower levels of C-peptide. Front Endocrinol (Lausanne) 2017;8:244.CrossrefPubMedGoogle Scholar

  • 13.

    Batsis JA, Mackenzie TA, Vasquez E, Germain CM, Emeny RT,Rippberger P, et al. Association of adiposity, telomere length and mortality: data from the NHANES 1999–2002. Int J Obes (Lond) 2018;42:198–204.CrossrefPubMedGoogle Scholar

  • 14.

    Dershem R, Chu X, Wood GC, Benotti P, Still CD, Rolston DD. Changes in telomere length 3–5 years after gastric bypass surgery. Int J Obes (Lond) 2017;41:1718–20.CrossrefPubMedGoogle Scholar

  • 15.

    Iglesias Molli AE, Panero J, Dos Santos PC, Gonzalez CD, Vilarino J, Sereday M, et al. Metabolically healthy obese women have longer telomere length than obese women with metabolic syndrome. PLoS One 2017;12:e0174945.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 16.

    Guzzardi MA, Iozzo P, Salonen MK, Kajantie E, Eriksson JG. Maternal adiposity and infancy growth predict later telomere length: a longitudinal cohort study. Int J Obes (Lond) 2016;40:1063–9.PubMedCrossrefGoogle Scholar

  • 17.

    Muezzinler A, Mons U, Dieffenbach AK, Butterbach K, Saum KU, Schick M, et al. Body mass index and leukocyte telomere length dynamics among older adults: results from the ESTHER cohort. Exp Gerontol 2016;74:1–8.CrossrefWeb of SciencePubMedGoogle Scholar

  • 18.

    Mundstock E, Sarria EE, Zatti H, Mattos Louzada F, Kich Grun L, Herbert Jones M, et al. Effect of obesity on telomere length: systematic review and meta-analysis. Obesity 2015;23:2165–74.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 19.

    Muezzinler A, Zaineddin AK, Brenner H. Body mass index and leukocyte telomere length in adults: a systematic review and meta-analysis. Obes Rev 2014;15:192–201.CrossrefWeb of SciencePubMedGoogle Scholar

  • 20.

    Moller R, Tafeit E, Sudi K, Reibnegger G. Quantifying the ‘appleness’ or ‘pearness’ of the human body by subcutaneous adipose tissue distribution. Ann Hum Biol 2000;27:47–55.PubMedCrossrefGoogle Scholar

  • 21.

    Moeller R, Horejsi R, Pilz S, Lang N, Sargsyan K, Dimitrova R, et al. Evaluation of risk profiles by subcutaneous adipose tissue topography in obese juveniles. Obesity 2007;15:1319–24.Web of SciencePubMedCrossrefGoogle Scholar

  • 22.

    Moller R, Tafeit E, Pieber TR, Sudi K, Reibnegger G. Measurement of subcutaneous adipose tissue topography (SAT-Top) by means of a new optical device, LIPOMETER, and the evaluation of standard factor coefficients in healthy subjects. Am J Hum Biol 2000;12:231–9.CrossrefPubMedGoogle Scholar

  • 23.

    Cawthon RM. Telomere measurement by quantitative PCR. Nucl Acids Res 2002;30:e47.CrossrefGoogle Scholar

  • 24.

    Tzanetakou IP, Katsilambros NL, Benetos A, Mikhailidis DP,Perrea DN. “Is obesity linked to aging?”: adipose tissue and the role of telomeres. Ageing Res Rev 2012;11:220–9.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 25.

    Dai Y, Wan X, Li X, Jin E, Li X. Neck circumference and future cardiovascular events in a high-risk population – a prospective cohort study. Lipids Health Dis 2016;15:46.CrossrefWeb of ScienceGoogle Scholar

  • 26.

    Koppad AK, Kaulgud RS, Arun BS. A study of correlation of neck circumference with Framingham risk score as a predictor of coronary artery disease. J Clin Diag Res 2017;11:OC17–20.Google Scholar

  • 27.

    Wulaningsih W, Watkins J, Matsuguchi T, Hardy R. Investigating the associations between adiposity, life course overweight trajectories, and telomere length. Aging 2016;8:2689–701.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 28.

    Chen S, Yeh F, Lin J, Matsuguchi T, Blackburn E, Lee ET, et al. Short leukocyte telomere length is associated with obesity in American Indians: the Strong Heart Family study. Aging (Albany, NY) 2014;6:380–9.Google Scholar

  • 29.

    Zgheib NK, Sleiman F, Nasreddine L, Nasrallah M, Nakhoul N, Isma’eel H, et al. Short telomere length is associated with aging, central obesity, poor sleep and hypertension in Lebanese individuals. Aging Dis 2018;9:77–89.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 30.

    Weghuber D, Zelzer S, Stelzer I, Paulmichl K, Kammerhofer D, Schnedl W, et al. High risk vs. “metabolically healthy” phenotype in juvenile obesity – neck subcutaneous adipose tissue and serum uric acid are clinically relevant. Exp Clin Endocrinol Diabet 2013;121:384–90.CrossrefWeb of ScienceGoogle Scholar

  • 31.

    Mangge H, Zelzer S, Puerstner P, Schnedl WJ, Reeves G, Postolache TT, et al. Uric acid best predicts metabolically unhealthy obesity with increased cardiovascular risk in youth and adults. Obesity 2013;21:E71–7.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 32.

    Wallner-Liebmann SJ, Moeller R, Horejsi R, Jurimae T, Jurimae J, Maestu J, et al. Normal weight estonian prepubertal boys show a more cardiovascular-risk-associated adipose tissue distribution than austrian counterparts. ISRN Obes 2013;2013:506751.PubMedGoogle Scholar

  • 33.

    Kadakia MB, Fox CS, Scirica BM, Murphy SA, Bonaca MP, Morrow DA. Central obesity and cardiovascular outcomes in patients with acute coronary syndrome: observations from the MERLIN-TIMI 36 trial. Heart 2011;97:1782–7.Web of SciencePubMedCrossrefGoogle Scholar

  • 34.

    Chen WZ, Chen XD, Ma LL, Zhang FM, Lin J, Zhuang CL, et al. Impact of visceral obesity and sarcopenia on short-term outcomes after colorectal cancer surgery. Dig Dis Sci 2018;63:1620–30.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 35.

    Doyle SL, Mongan AM, Donohoe CL, Pidgeon GP, Sherlock M, Reynolds JV, et al. Impact of visceral obesity and metabolic syndrome on the postoperative immune, inflammatory, and endocrine response following surgery for esophageal adenocarcinoma. Dis Esophagus 2017;30:1–11.Web of SciencePubMedGoogle Scholar

  • 36.

    Kuritzkes BA, Pappou EP, Kiran RP, Baser O, Fan L, Guo X, et al. Visceral fat area, not body mass index, predicts postoperative 30-day morbidity in patients undergoing colon resection for cancer. Int J Colorectal Dis 2018;8:1019–28.Web of ScienceGoogle Scholar

  • 37.

    Mangge H, Almer G, Haj-Yahya S, Grandits N, Gasser R, Pilz S, et al. Nuchal thickness of subcutaneous adipose tissue is tightly associated with an increased LMW/total adiponectin ratio in obese juveniles. Atherosclerosis 2009;203:277–83.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 38.

    Mangge H, Becker K, Fuchs D, Gostner JM. Antioxidants, inflammation and cardiovascular disease. World J Cardiol 2014;6:462–77.PubMedCrossrefGoogle Scholar

  • 39.

    Mangge H, Schauenstein K, Stroedter L, Griesl A, Maerz W, Borkenstein M. Low grade inflammation in juvenile obesity and type 1 diabetes associated with early signs of atherosclerosis. Exp Clin Endocrinol Diabetes 2004;112:378–82.PubMedCrossrefGoogle Scholar

  • 40.

    Mangge H, Ciardi C, Becker K, Strasser B, Fuchs D, Gostner JM. Influence of antioxidants on leptin metabolism and its role in the pathogenesis of obesity. Adv Exp Med Biol 2017;960:399–413.PubMedCrossrefGoogle Scholar

  • 41.

    Wafa SW, Hamzaid H, Talib RA, Reilly JJ. Objectively measured habitual physical activity and sedentary behaviour in obese and non-obese Malaysian children. J Trop Pediatr 2014;60:161–3.CrossrefWeb of SciencePubMedGoogle Scholar

  • 42.

    Werner C, Hanhoun M, Widmann T, Kazakov A, Semenov A, Poss J, et al. Effects of physical exercise on myocardial telomere-regulating proteins, survival pathways, and apoptosis. J Am Coll Cardiol 2008;52:470–82.Web of ScienceCrossrefPubMedGoogle Scholar

  • 43.

    Ludlow AT, Gratidao L, Ludlow LW, Spangenburg EE, Roth SM. Acute exercise activates p38 MAPK and increases the expression of telomere-protective genes in cardiac muscle. Exp Physiol 2017;102:397–410.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 44.

    Martinez P, Gomez-Lopez G, Garcia F, Mercken E, Mitchell S, Flores JM, et al. RAP1 protects from obesity through its extratelomeric role regulating gene expression. Cell Rep 2013;3:2059–74.CrossrefWeb of SciencePubMedGoogle Scholar

  • 45.

    Yeung F, Ramirez CM, Mateos-Gomez PA, Pinzaru A, Ceccarini G, Kabir S, et al. Nontelomeric role for Rap1 in regulating metabolism and protecting against obesity. Cell Rep 2013;3:1847–56.Web of ScienceCrossrefPubMedGoogle Scholar

  • 46.

    Carulli L, Anzivino C, Baldelli E, Zenobii MF, Rocchi MB, Bertolotti M. Telomere length elongation after weight loss intervention in obese adults. Mol Genet Metab 2016;118:138–42.CrossrefWeb of SciencePubMedGoogle Scholar

  • 47.

    Laimer M, Melmer A, Lamina C, Raschenberger J, Adamovski P, Engl J, et al. Telomere length increase after weight loss induced by bariatric surgery: results from a 10 year prospective study. Int J Obes (Lond) 2016;40:773–8.CrossrefPubMedGoogle Scholar

  • 48.

    Tafeit E, Moller R, Sudi K, Horejsi R, Berg A, Reibnegger G. Orthogonal factor coefficient development of subcutaneous adipose tissue topography (SAT-Top) in girls and boys. Am J Phys Anthropol 2001;115:57–61.PubMedCrossrefGoogle Scholar

  • 49.

    Moller R, Tafeit E, Smolle KH, Pieber TR, Ipsiroglu O, Duesse M, et al. Estimating percentage total body fat and determining subcutaneous adipose tissue distribution with a new noninvasive optical device LIPOMETER. Am J Hum Biol 2000;12:221–30.CrossrefPubMedGoogle Scholar

About the article

Corresponding author: Assoz-Prof. Dr. Wilfried Renner, Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria, Phone: +43 316 385 13145, Fax: +43 316 385 13430


Received: 2018-07-26

Accepted: 2019-03-01

Published Online: 2019-03-26

Published in Print: 2019-08-27


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.


Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), Volume 57, Issue 9, Pages 1358–1363, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/cclm-2018-0801.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Harald Mangge, Susanne Bengesser, Nina Dalkner, Armin Birner, Frederike Fellendorf, Martina Platzer, Robert Queissner, Rene Pilz, Alexander Maget, Bernd Reininghaus, Carlo Hamm, Konstantin Bauer, Alexandra Rieger, Sieglinde Zelzer, Dietmar Fuchs, and Eva Reininghaus
Frontiers in Nutrition, 2019, Volume 6

Comments (0)

Please log in or register to comment.
Log in