Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Greaves, Ronda / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter


IMPACT FACTOR 2018: 3.638

CiteScore 2018: 2.44

SCImago Journal Rank (SJR) 2018: 1.191
Source Normalized Impact per Paper (SNIP) 2018: 1.205

Online
ISSN
1437-4331
See all formats and pricing
More options …
Ahead of print

Issues

Reference interval by the indirect approach of serum thyrotropin (TSH) in a Mediterranean adult population and the association with age and gender

Bruna Lo Sasso
  • Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Matteo Vidali / Concetta Scazzone
  • Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Luisa Agnello
  • Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marcello Ciaccio
  • Corresponding author
  • Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
  • Department of Laboratory Medicine, University Hospital, Palermo, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-06-11 | DOI: https://doi.org/10.1515/cclm-2018-0957

Abstract

Background

The serum concentration of thyrotropin (TSH) represents a first-line test in diagnostic algorithms. The estimation of TSH reference intervals (RIs) is still a matter of debate due to the high prevalence of subclinical disease making difficult the definition of truly healthy subjects. The aim of this study was to estimate TSH RIs in healthy subjects and to evaluate the effect of age and gender on TSH concentration.

Methods

Forty-four thousand one hundred and fifty-six TSH data were collected between July 2012 and April 2018 at the Department of Laboratory Medicine, University-Hospital, Palermo. Common and sex-specific RIs were estimated by Arzideh’s indirect method after exclusion of individuals younger than 15 years, subjects with repeated TSH tests and with abnormal free thyroxine (fT4), free triiodothyronine (fT3) or anti-thyroid-peroxidase antibodies. The combined effect of age and gender on TSH values was evaluated.

Results

RIs estimated in the selected individuals (n = 22602) were, respectively, 0.18–3.54 mIU/L (general), 0.19–3.23 mIU/L (men) and 0.18–3.94 mIU/L (women). Women showed significantly higher median TSH than men (1.46 vs. 1.39 mIU/L; p < 0.0001). Both in men and in women, median TSH decreased along with age; however, although up to 60 years in both men and women showed similar values, afterwards women showed constantly higher TSH than men. Accordingly, statistical analysis showed a significant interaction between gender and age (p = 0.001), suggesting that the effect of age on TSH is different between genders.

Conclusions

Our findings suggest that the indirect method, with appropriate cleaning of data, could be useful to define TSH RIs.

Keywords: indirect method; laboratory information systems; reference intervals; thyroid disease; thyrotropin; TSH

References

  • 1.

    Boucai L, Hollowell JG, Surks MI. An approach for development of age-, gender-, and ethnicity-specific thyrotropin reference limits. Thyroid 2011;21:5–11.CrossrefWeb of SciencePubMedGoogle Scholar

  • 2.

    Surks MI, Hollowell JG. Age-specific distribution of serum thyrotropin and antithyroid antibodies in the US population: implications for the prevalence of subclinical hypothyroidism. J Clin Endocrinol Metab 2007;92:4575–82.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 3.

    d’Herbomez M, Jarrige V, Darte C. Reference intervals for serum thyrotropin (TSH) and free thyroxine (FT4) in adults using the Access Immunoassay System. Clin Chem Lab Med 2005;43:102–5.PubMedGoogle Scholar

  • 4.

    Surks MI, Boucai L. Age- and race-based serum thyrotropin reference limits. J Clin Endocrinol Metab 2010;95:496–502.CrossrefWeb of SciencePubMedGoogle Scholar

  • 5.

    Grasbeck R, Saris NE. Establishment and use of normal values. Scand J Clin Lab Invest 1969;26:62–3.Google Scholar

  • 6.

    IFCC, CLSI, EP28-A3c Document. Defining, establishing, and verifying reference intervals in the clinical laboratory: approved guideline, 3rd ed., vol. 28, No. 30. Wayne, PA: CLSI, 2010.Google Scholar

  • 7.

    Sunderman Jr FW. Current concepts of “normal values,” “reference values,” and “discrimination values” in clinical chemistry. Clin Chem 1975;21:1873–7.Google Scholar

  • 8.

    Grasbeck R. The evolution of the reference value concept. Clin Chem Lab Med 2004;42:692–7.PubMedGoogle Scholar

  • 9.

    Katayev A, Balciza C, Seccombe DW. Establishing reference intervals for clinical laboratory test results; is there a better way? Am J Clin Pathol 2010;133:175–7.Web of ScienceGoogle Scholar

  • 10.

    Grossi E, Colombo R, Cavuto S, Franzini C. The REALAB project: a new method for the formulation of reference intervals based on current data. Clin Chem 2005;51:1232–40.CrossrefPubMedGoogle Scholar

  • 11.

    Henny J, Vassault A, Boursier G, Vukasovic I, Brguljan PM, Lohmander M, et al. Recommendation for the review of biological reference intervals in medical laboratories. Clin Chem Lab Med 2016;54:1893–900.Web of SciencePubMedGoogle Scholar

  • 12.

    Agnello L, Bellia C, Lo Sasso B, Pivetti A, Muratore M, Scazzone C, et al. Establishing the upper reference limit of Galectin-3 in healthy blood donors. Biochem Med (Zagreb) 2017;27:030709.CrossrefPubMedGoogle Scholar

  • 13.

    Bellia C, Zaninotto M, Cosma C, Agnello L, Lo Sasso B, Bivona G, et al. Definition of the upper reference limit of glycated albumin in blood donors from Italy. Clin Chem Lab Med 2017;56:120–5.PubMedWeb of ScienceGoogle Scholar

  • 14.

    Bivona G, Agnello L, Ciaccio M. Vitamin D and immunomodulation: is it time to change the reference values? Ann Clin Lab Sci 2017;47:508–10.PubMedGoogle Scholar

  • 15.

    Haeckel R, Wosniok W, Arzideh F, Zierk J, Gurr E, Streichert T. Critical comments to a recent EFLM recommendation for the review of reference intervals. Clin Chem Lab Med 2017;55:341–7.PubMedWeb of ScienceGoogle Scholar

  • 16.

    Ritchie RF, Palomaki G. Selecting clinically relevant populations for reference intervals. Clin Chem Lab Med 2004;42:702–9.PubMedGoogle Scholar

  • 17.

    Wang Y, Zhang YX, Zhou YL, Xia J. Establishment of reference intervals for serum thyroid-stimulating hormone, free and total thyroxine, and free and total triiodothyronine for the Beckman Coulter DxI-800 analyzers by indirect method using data obtained from Chinese population in Zhejiang Province, China. J Clin Lab Anal 2017;31:e22069.Web of ScienceGoogle Scholar

  • 18.

    Pryce SD. Level of haemoglobin in whole blood and red blood cells, and proposed convention for defining normality. Lancet 1960;ii:233–6.Google Scholar

  • 19.

    Hoffmann R G. Statistics in the practice of medicine. J Am Med Assoc 1963;185:964–73.Google Scholar

  • 20.

    Arzideh F, Wosniok W, Gurr E, Hinsch W, Schumann G, Weinstock N, et al. A plea for intra-laboratory reference limits. Part 2. A bimodal retrospective concept for determining reference limits from intra-laboratory databases demonstrated by catalytic activity concentrations of enzymes. Clin Chem Lab Med 2007;45:1043–57.Web of SciencePubMedGoogle Scholar

  • 21.

    Arzideh F, Wosniok W, Haeckel R. Reference limits of plasma and serum creatinine concentrations from intra-laboratory data bases of several German and Italian medical centres: Comparison between direct and indirect procedures. Clin Chim Acta 2010;411:215–21.Web of SciencePubMedCrossrefGoogle Scholar

  • 22.

    Arzideh F, Brandhorst G, Gurr E, Hinsch W, Hoff T, Roggenbuck L, et al. An improved indirect approach for determining reference limits from intra-laboratory data bases exemplified by concentrations of electrolytes. J Lab Med 2009;33:52–66.Google Scholar

  • 23.

    Jones GR, Haeckel R, Loh TP, Sikaris K, Streichert T, Katayev A, et al. IFCC Committee on Reference Intervals and Decision Limits. Indirect methods for reference interval determination – review and recommendations. Clin Chem Lab Med 2018;57:20–9.PubMedGoogle Scholar

  • 24.

    Tozzoli R, D’Aurizio F, Metus P, Steffan A, Mazzon C, Bagnasco M. Reference intervals for thyrotropin in an area of Northern Italy: the Pordenone Thyroid Study (TRIPP). J Endocrinol Invest 2018;41:985–94.CrossrefWeb of ScienceGoogle Scholar

  • 25.

    Arzideh F, Wosniok W, Haeckel R. Indirect reference intervals of plasma and serum thyrotropin (TSH) concentrations from intra-laboratory data bases from several German and Italian medical centres. Clin Chem Lab Med 2011;49:659–64.Web of SciencePubMedGoogle Scholar

  • 26.

    Friis-Hansen L, Hilsted L. Reference intervals for thyrotropin and thyroid hormones for healthy adults based on the NOBIDA material and determined using a Modular E170. Clin Chem Lab Med 2008;46:1305–12.PubMedGoogle Scholar

  • 27.

    Dhatt GS, Griffin G, Agarwal MM. Thyroid hormone reference intervals in an ambulatory Arab population on the Abbot Architect i2000 immunoassay analyzer. Clin Chim Acta 2006;364:226–9.CrossrefGoogle Scholar

  • 28.

    Surks MI, Goswami G, Daniels GH. The thyrotropin reference range should remain unchanged. J Clin Endocrinol Metab 2005;90:5489–96.PubMedCrossrefGoogle Scholar

  • 29.

    Hollowell JG, Stehling NW, Flanders WE. Serum TSH, T4 and anthyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab 2002;87: 489–99.CrossrefGoogle Scholar

  • 30.

    Ehrenkranz J, Bach PR, Snow GL, Schneider A, Lee JL, Ilstrup S, et al. Circadian and circannual rhythms in thyroid hormones: determining the TSH and free T4 reference intervals based upon time of day, age, and sex. Thyroid 2015;25:954–61.Web of ScienceCrossrefPubMedGoogle Scholar

  • 31.

    Cai J, Fang Y, Jing D, Xu S, Ming J, Gao B, et al. Reference intervals of thyroid hormones in a previously iodine-deficient but presently more than adequate area of western China: a population-based survey. Endocr J 2016;63:381–8.CrossrefWeb of ScienceGoogle Scholar

  • 32.

    Sriphrapradang C, Pavarangkoon S, Jongjaroenprasert W, Chailurkit LO, Ongphiphadhanakul B, Aekplakorn W. Reference ranges of serum TSH, FT4 and thyroid autoantibodies in the Thai population: the national health examination survey. Clin Endocrinol 2014;80:751–6.CrossrefWeb of ScienceGoogle Scholar

  • 33.

    Amouzegar A, Delshad H, Mehran L, Tohidi M, Khafaji F, Aziz F. Reference limits of thyrotropin (TSH) and free thyroxine (FT4) in thyroperoxidase positive and negative subjects: a population based study. J Endocrinol Invest 2013;36:950–4.Google Scholar

  • 34.

    Schalin-Jäntti C, Tanner P, Välimäki MJ, Hämäläinen E. Serum TSH reference interval in healthy Finnish adults using the Abbott Architect 2000i analyzer. Scand J Clin Lab Invest 2011;71:344–9.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 35.

    Demers LM, Spencer CA. Laboratory support for the diagnosis and monitoring of thyroid disease. Clin Endocrinol (Oxf) 2003;58:138–40.CrossrefPubMedGoogle Scholar

  • 36.

    O’Leary PC, Feddema PH, Michelangeli VP, Leedman PJ, Chew GT, Knuiman M, et al. Investigations of thyroid hormones and antibodies based on a community health survey: the Busselton thyroid study. Clin Endocrinol (Oxf) 2006;64:97–104.CrossrefPubMedGoogle Scholar

  • 37.

    Milinković N, Ignjatović S, Žarković M, Jovičić S, Radosavljević B, Singh S, et al. Indirect estimation of age-related reference limits of thyroid parameters: a cross-sectional study of outpatients’ results. Scand J Clin Lab Invest 2014;74:378–84.CrossrefWeb of SciencePubMedGoogle Scholar

  • 38.

    Atzmon G, Barzilai N, Hollowell JG, Surks MI, Gabriely I. Extreme longevity is associated with increased serum thyrotropin. J Clin Endocrinol Metab 2009;94:1251–4.Web of ScienceCrossrefPubMedGoogle Scholar

  • 39.

    van den Beld AW, Visser TJ, Feelders RA, Grobbee DE, Lamberts SW. Thyroid hormone concentrations, disease, physical function, and mortality in elderly men. J Clin Endocrinol Metab 2005;90:6403–9.CrossrefPubMedGoogle Scholar

  • 40.

    Magri F, Muzzoni B, Cravello L, Fioravanti M, Busconi L, Camozzi D, et al. Thyroid function in physiological aging and in centenarians: possible relationships with some nutritional markers. Metabolism 2002;51:105–9.PubMedCrossrefGoogle Scholar

  • 41.

    Clerico A, Trenti T, Aloe R, Dittadi R, Rizzardi S, Migliardi M, et al. A multicenter study for the evaluation of the reference interval for TSH in Italy (ELAS TSH Italian Study). Clin Chem Lab Med. 2018;57:259–67.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 42.

    Bagnasco M, Moleti M, Regalbuto C, Tonacchera M, Olivieri A. Iodoprofilassi 11 anni dopo: progressi e prospettive. L’Endocrinologo 2017;18:54–6.Google Scholar

  • 43.

    van de Ven AC, Netea-Maier RT, Smit JW, Kusters R, van der Stappen JW, Pronk-Admiraal CJ, et al. Thyrotropin versus age relation as an indicator of historical iodine intake. Thyroid 2015;25:629–34.CrossrefWeb of SciencePubMedGoogle Scholar

About the article

Corresponding author: Marcello Ciaccio, MD, PhD, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy; and Department of Laboratory Medicine, University Hospital, Via del Vespro, 129, CAP 90127, Palermo, Italy, Phone: +39 091 23865701, Fax: +39 091 655 3275


Received: 2018-08-31

Accepted: 2019-02-27

Published Online: 2019-06-11


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.


Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), 20180957, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/cclm-2018-0957.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in