Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Greaves, Ronda / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter


IMPACT FACTOR 2018: 3.638

CiteScore 2018: 2.44

SCImago Journal Rank (SJR) 2018: 1.191
Source Normalized Impact per Paper (SNIP) 2018: 1.205

Online
ISSN
1437-4331
See all formats and pricing
More options …
Ahead of print

Issues

Screening of chemical libraries in pursuit of kallikrein-5 specific inhibitors for the treatment of inflammatory dermatoses

Caitlin T. Di Paolo
  • Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
  • Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Panagiota S. Filippou
  • Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
  • University Health Network, Department of Clinical Biochemistry, Toronto, Ontario, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yijing Yu
  • Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
  • Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gennadiy Poda
  • Drug Discovery, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
  • Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eleftherios P. Diamandis
  • Corresponding author
  • Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
  • Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
  • Head of the Department of Clinical Biochemistry, Mount Sinai Hospital and University Health Network, 60 Murray St., Box 32, Floor 6, Rm L6-201, Toronto, Ontario M5T 3L9, Canada
  • Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ioannis Prassas
  • Corresponding author
  • Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, 60 Murray Street, 6th Floor, Room 6-201 [Box 32], Toronto, Ontario M5T 3L9, Canada
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-05-27 | DOI: https://doi.org/10.1515/cclm-2019-0123

Abstract

Background

Aberrant kallikrein activity is observed in a number of inflammatory dermatoses. Up-regulation of kallikrein-5 (KLK5) activity leads to uncontrolled skin desquamation and cleavage of proteinase-activated receptor-2 (PAR2), causing the release of pro-inflammatory cytokines and disruption of epidermal barrier function. This study aimed to identify KLK5-specific small molecule inhibitors which can serve as the foundation of a novel therapeutic for inflammatory skin disorders.

Methods

Five chemical libraries (13,569 compounds total) were screened against recombinant KLK5 using a fluorogenic enzymatic assay. Secondary validation was performed on the top 22 primary hits. All hits were docked in the KLK5 crystal structure to rationalize their potential interactions with the protein.

Results

A naturally occurring compound derived from the wood of Caesalpinia sappan (Brazilin) was identified as a novel KLK5 inhibitor (IC50: 20 μM, Ki: 6.4 μM). Docking suggests that the phenolic moiety of Brazilin binds in the S1-pocket of KLK5 and forms a H-bond with S195 side chain. KLK14 was also found to be susceptible to inhibition by Brazilin with a calculated IC50 value of 14.6 μM.

Conclusions

Natural KLK5 small molecule inhibitors such as Brazilin, are ideal for topical skin disease drug design and remain a promising therapeutic for severe cases of inflammatory skin disorders. Optimized KLK inhibitors may have increased efficacy as therapeutics and warrant further investigation.

This article offers supplementary material which is provided at the end of the article.

Keywords: Brazilin; high-throughput screening; inflammation; inhibitor; kallikrein; skin disorders

References

  • 1.

    Sotiropoulou G, Pampalakis G, Diamandis EP. Functional roles of human kallikrein-related peptidases. J Biol Chem 2009;284:32989–94.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 2.

    Komatsu N, Saijoh K, Toyama T, Ohka R, Otsuki N, Hussack G, et al. Multiple tissue kallikrein mRNA and protein expression in normal skin and skin diseases. Brit J Derm 2005;153:274–81.CrossrefGoogle Scholar

  • 3.

    Brattsand M, Stefansson K, Lundh C, Haasum Y, Egelrud T. A proteolytic cascade of kallikreins in the stratum corneum. J Invest Dermatol 2005;124:198–203.PubMedCrossrefGoogle Scholar

  • 4.

    Sakabe J, Yamamoto M, Hirakawa S, Motoyama A, Ohta I, Tatsuno K, et al. Kallikrein-related peptidase 5 functions in proteolytic processing of profilaggrin in cultured human keratinocytes. J Biol Chem 2013;288:17179–89.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 5.

    Bonnart C, Deraison C, Lacroix M, Uchida Y, Besson C, Robin A, et al. Elastase 2 is expressed in human and mouse epidermis and impairs skin barrier function in Netherton syndrome through filaggrin and lipid misprocessing. J Clin Invest 2010;120:871–82.Web of SciencePubMedCrossrefGoogle Scholar

  • 6.

    Yamasaki K, Schauber J, Coda A, Lin H, Dorschner RA, Schechter NM, et al. Kallikrein-mediated proteolysis regulates the antimicrobial effects of cathelicidins in skin. FASEB J 2006;20:2068–80.CrossrefPubMedGoogle Scholar

  • 7.

    Caubet C, Jonca N, Brattsand M, Guerrin M, Bernard D, Schmidt R, et al. Degradation of corneodesmosome proteins by two serine proteases of the kallikrein family, SCTE/KLK5/hK5 and SCCE/KLK7/hK7. J Invest Dermatol 2004;122:1235–44.CrossrefPubMedGoogle Scholar

  • 8.

    Borgoño CA, Michael IP, Komatsu N, Jayakumar A, Kapadia R, Clayman GL, et al. A potential role for multiple tissue kallikrein serine proteases in epidermal desquamation. J Biol Chem 2007;282:3640–52.Web of SciencePubMedGoogle Scholar

  • 9.

    Deraison C, Bonnart C, Lopez F, Besson C, Robinson R, Jayakumar A, et al. LEKTI fragments specifically inhibit KLK5, KLK7, and KLK14 and control desquamation through a pH-dependent interaction. Mol Biol Cell 2007;18:3607–19.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 10.

    Egelrud T, Brattsand M, Kreutzmann P, Walden M, Vitzithum K, Marx UC, et al. hK5 and hK7, two serine proteinases abundant in human skin, are inhibited by LEKTI domain 6. Brit J Dermatol 2005;153:510–20.Google Scholar

  • 11.

    Hachem JP, Man MQ, Crumrine D, Uchida Y, Brown BE, Rogiers V, et al. Sustained serine proteases activity by prolonged increase in pH leads to degradation of lipid processing enzymes and profound alterations of barrier function and stratum corneum integrity. J Invest Dermatol 2005;125:510–20.PubMedCrossrefGoogle Scholar

  • 12.

    Komatsu N, Suga Y, Saijoh K, Liu AC, Khan S, Mizuno Y, et al. Elevated human tissue kallikrein levels in the stratum corneum and serum of peeling skin syndrome-type B patients suggests an over-desquamation of corneocytes. J Invest Dermatol 2006;126:2338–42.PubMedCrossrefGoogle Scholar

  • 13.

    Komatsu N, Saijoh K, Kuk C, Shirasaki F, Takehara K, Diamandis EP. Aberrant human tissue kallikrein levels in the stratum corneum and serum of patients with psoriasis: dependence on phenotype, severity and therapy. Brit J Dermatol 2007;156:875–83.Web of ScienceCrossrefGoogle Scholar

  • 14.

    Yamasaki K, Nardo A, Bardan A, Murakami M, Ohtake T, Coda A, et al. Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nature Med 2007;13:975–80.CrossrefWeb of ScienceGoogle Scholar

  • 15.

    Voegeli R, Rawlings AV, Breternitz M, Doppler S, Schreier T, Fluhr JW. Increased stratum corneum serine protease activity in acute eczematous atopic skin. Brit J Dermatol 2009;161:70–7.CrossrefWeb of ScienceGoogle Scholar

  • 16.

    Hollenberg MD, Oikonomopoulou K, Hansen KK, Saifeddine M, Ramachandran R, Diamandis EP. Kallikreins and proteinase-mediated signaling: proteinase-activated receptors (PARs) and the pathophysiology of inflammatory diseases and cancer. Biol Chem 2008;389:643–51.PubMedGoogle Scholar

  • 17.

    Oikonomopoulou K, Hansen KK, Saifeddine M, Vergnolle N, Tea I, Blaber M, et al. Kallikrein-mediated cell signalling: targeting proteinase-activated receptors (PARs). Biol Chem 2006;387:817–24.PubMedGoogle Scholar

  • 18.

    Chavanas S, Bodemer C, Rochat A, Hamel-Teillac D, Ali M, Irvine AD, et al. Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat Genet 2000;25:141–2.CrossrefPubMedGoogle Scholar

  • 19.

    Hovnanian A. Netherton syndrome: skin inflammation and allergy by loss of protease inhibition. Cell Tissue Res 2013;351:289–300.Web of SciencePubMedCrossrefGoogle Scholar

  • 20.

    Furio L, de Veer S, Jaillet M, Briot A, Robin A, Deraison C, et al. Transgenic kallikrein 5 mice reproduce major cutaneous and systemic hallmarks of Netherton syndrome. J Exp Med 2014;211:499–513.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 21.

    Briot A, Deraison C, Lacroix M, Bonnart C, Robin A, Besson C, et al. Kallikrein 5 induces atopic dermatitis–like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. J Exp Med 2009;206:1135–47.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 22.

    Stefansson K, Brattsand M, Roosterman D, Kempkes C, Bocheva G, Steinhoff M, et al. Activation of proteinase-activated receptor-2 by human kallikrein-related peptidases. J Invest Dermatol 2008;128:18–25.Web of ScienceCrossrefPubMedGoogle Scholar

  • 23.

    Prassas I, Eissa A, Poda G, Diamandis EP. Unleashing the therapeutic potential of human kallikrein-related serine proteases. Nat Rev Drug Discov 2015;14:183–202.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 24.

    Yu Y, Prassas I, Dimitromanolakis A, Diamandis EP. Novel biological substrates of human kallikrein 7 identified through degradomics. J Biol Chem 2015;290:17762–75.Web of ScienceCrossrefPubMedGoogle Scholar

  • 25.

    Shaw JL, Diamandis EP. Distribution of 15 human kallikreins in tissues and biological fluids. Clin Chem 2007;53:1423–32.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 26.

    Richardson JL, Nett IR, Jones DC, Abdille MH, Gilbert IH, Fairlamb AH. Improved tricyclic inhibitors of trypanothione reductase by screening and chemical synthesis. Chem Med Chem 2009;4:1333–40.CrossrefGoogle Scholar

  • 27.

    Miyahara K, Kawasaki T, Kinjyo J-E, Shimokawa T, Yamahara J, Yamasaki M, et al. The X-ray analysis of caesalpin J from sappan lignum. Chem Pharm Bull 1986;34:4166–9.PubMedCrossrefGoogle Scholar

  • 28.

    Debela M, Goettig P, Magdolen V, Huber R, Schechter NM, Bode W. Structural basis of the zinc inhibition of human tissue kallikrein 5. J Mol Biol 2007;373:1017–31.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 29.

    Gooderham M, Lynde CW, Papp K, Bourcier M, Guenther L, Gulliver W, et al. Review of systemic treatment options for adult atopic dermatitis. J Cutan Med Surg 2017;21:31–9.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 30.

    Gottlieb AB. Therapeutic options in the treatment of psoriasis and atopic dermatitis. J Am Acad Dermatol 2005;53:S3–16.PubMedCrossrefGoogle Scholar

  • 31.

    Chen W, Kinsler VA, Macmillan D, Di WL. Tissue kallikrein inhibitors based on the sunflower trypsin inhibitor scaffold – a potential therapeutic intervention for skin diseases. PLoS One 2016;11:e0166268.Web of ScienceCrossrefPubMedGoogle Scholar

  • 32.

    de Veer SJ, Furio L, Swedberg JE, Munro CA, Brattsand M, Clements JA, et al. Selective substrates and inhibitors for kallikrein-related peptidase 7 (KLK7) shed light on KLK proteolytic activity in the stratum corneum. J Invest Dermatol 2017;137:430–9.CrossrefWeb of SciencePubMedGoogle Scholar

  • 33.

    Tan X, Soualmia F, Furio L, Renard J-F, Kempen I, Qin L, et al. Toward the first class of suicide inhibitors of kallikreins involved in skin diseases. J Biol Chem 2015;58:598–612.Google Scholar

  • 34.

    Rondão R, de Melo SJ, Pina J, Mello MJ, Vitorino T, Parola AJ. Brazilwood reds: the (photo) chemistry of brazilin and brazilein. J Phys Chem 2013;117:10650–60.Web of ScienceCrossrefGoogle Scholar

  • 35.

    Działo M, Mierziak J, Korzun U, Preisner M, Szopa J, Kulma A. The potential of plant phenolics in prevention and therapy of skin disorders. Inter J Mol Sci 2016;17:160.CrossrefGoogle Scholar

  • 36.

    Nirmal NP, Rajput MS, Prasad R, Ahmad M. Brazilin from Caesalpinia sappan heartwood and its pharmacological activities: a review. Asian Pac J Trop Med 2015;8:421–30.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 37.

    Nirmal N, Panichayupakaranant P. Antioxidant, antibacterial, and anti-inflammatory activities of standardized brazilin-rich Caesalpinia sappan extract. Pharm Biol 2015;53:1339–43.Web of ScienceCrossrefPubMedGoogle Scholar

  • 38.

    Batubara I, Mitsunaga T, Ohashi H. Brazilin from Caesalpinia sappan wood as an antiacne agent. J Wood Sci 2010;56:77–81.CrossrefWeb of ScienceGoogle Scholar

  • 39.

    Washiyama M, Sasaki Y, Hosokawa T, Nagumo S. Anti-inflammatory constituents of Sappan Lignum. Biol Pharm Bull 2009;32:941–4.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 40.

    Li ZY, Zheng Y, Chen Y, Pan M, Zheng SB, Huang W, et al. Brazilin ameliorates diabetic nephropathy and inflammation in db/db mice. Inflammation 2017;40:1365–74.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 41.

    Jung M, Hur D, Song S, Park Y, Kim T, Bang S, et al. Tannic acid and quercetin display a therapeutic effect in atopic dermatitis via suppression of angiogenesis and TARC expression in Nc/Nga mice. J Invest Dermatol 2010;130:1459–63.CrossrefWeb of SciencePubMedGoogle Scholar

  • 42.

    Nirmal N, Panichayupakaranant P. Anti-Propionibacterium acnes assay-guided purification of brazilin and preparation of brazilin rich extract from Caesalpinia sappan heartwood. Pharm Biol 2014;52:1204–7.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 43.

    Stefansson K, Brattsand M, Ny A, Glas B, Egelrud T. Kallikrein-related peptidase 14 may be a major contributor to trypsin-like proteolytic activity in human stratum corneum. Biol Chem 2006;367:3031–41.Google Scholar

  • 44.

    Emami N, Diamandis EP. Human kallikrein-related peptidase 14 (KLK14) is a new activator component of the KLK proteolytic cascade possible function in seminal plasma and skin. J Biol Chem 2008;283:3031–41.Web of SciencePubMedCrossrefGoogle Scholar

  • 45.

    Kasparek P, Ileninova Z, Zbodakova O, Kanchev I, Benada O, Chalupsky K, et al. KLK5 and KLK7 ablation fully rescues lethality of Netherton syndrome-like phenotype. PLoS Genet 2017;13:e1006566.Web of SciencePubMedCrossrefGoogle Scholar

  • 46.

    Matsubara Y, Matsumoto T, Koseki J, Kaneko A, Aiba S, Yamasaki K. Inhibition of human kallikrein 5 protease by triterpenoids from natural sources. Molecules 2017;22:1–12.Web of ScienceGoogle Scholar

  • 47.

    Weidinger S, Beck LA, Bieber T, Kabashima K, Irvine AD. Atopic dermatitis. Nat Rev Dis Primers 2018;4:1.CrossrefPubMedGoogle Scholar

  • 48.

    Swedberg JE, de Veer SJ, Harris JM. Natural and engineered kallikrein inhibitors: an emerging pharmacopoeia. Biol Chem 2010;391:357–74.PubMedWeb of ScienceGoogle Scholar

  • 49.

    Sotiropoulou G, Pampalakis G. Targeting the kallikrein-related peptidases for drug development. Trends Pharmacol Sci 2012;33:623–34.PubMedCrossrefWeb of ScienceGoogle Scholar

About the article

Corresponding authors: Eleftherios P. Diamandis, MD, PhD, FRCP(C), FRSC, Head of the Department of Clinical Biochemistry, Mount Sinai Hospital and University Health Network, 60 Murray St., Box 32, Floor 6, Rm L6-201, Toronto, Ontario M5T 3L9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada; and Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada, Phone: +(416) 586-8443 and Ioannis Prassas, PhD, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, 60 Murray Street, 6th Floor, Room 6-201 [Box 32], Toronto, Ontario M5T 3L9, Canada, Phone: 416-586-4800 x7215, Fax: 416-619-5521, www.acdclab.org


Received: 2019-02-01

Accepted: 2019-04-15

Published Online: 2019-05-27


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.


Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), 20190123, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/cclm-2019-0123.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in