Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Greaves, Ronda / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter

IMPACT FACTOR 2018: 3.638

CiteScore 2018: 2.44

SCImago Journal Rank (SJR) 2018: 1.191
Source Normalized Impact per Paper (SNIP) 2018: 1.205

See all formats and pricing
More options …
Ahead of print


Individualized metabolomics: opportunities and challenges

Biswapriya MisraORCID iD: https://orcid.org/0000-0003-2589-6539
Published Online: 2019-04-05 | DOI: https://doi.org/10.1515/cclm-2019-0130


The goal of advancing science in health care is to provide high quality treatment and therapeutic opportunities to patients in need. This is especially true in precision medicine, wherein the ultimate goal is to link disease phenotypes to targeted treatments and novel therapeutics at the scale of an individual. With the advent of -omics technologies, such as genomics, proteomics, microbiome, among others, the metabolome is of wider and immediate interest for its important role in metabolic regulation. The metabolome, of course, comes with its own questions regarding technological challenges. In this opinion article, I attempt to interrogate some of the main challenges associated with individualized metabolomics, and available opportunities in the context of its clinical application. Some questions this article addresses and attempts to find answers for are: Can a personal metabolome (n = 1) be inexpensive, affordable and informative enough (i.e. provide predictive yet validated biomarkers) to represent the entirety of a population? How can a personal metabolome complement advances in other -omics areas and the use of monitoring devices, which occupy our personal space?

Keywords: big data; clinical; healthcare; individualized; mass spectrometry; metabolomics; personalized; precision


  • 1.

    Clough AJ, Hilmer SN, Naismith SL, Kardell LD, Gnjidic D. N-of-1 trials for assessing the effects of deprescribing medications on short-term clinical outcomes in older adults: a systematic review. J Clin Epidemiol 2018;93:112–9.PubMedCrossrefGoogle Scholar

  • 2.

    Huang YH, Liu Q, Liu Y, Zhao YQ, Li YF, Yu SJ, et al. An n-of-1 trial service in clinical practice: testing the effectiveness of Liuwei Dihuang decoction for kidney-Yin deficiency syndrome. Evid-Based Compl Alt 2013;2013, Article ID 827915:1–7.Google Scholar

  • 3.

    Lillie EO, Patay B, Diamant J, Issell B, Topol EJ, Schork NJ. The n-of-1 clinical trial: the ultimate strategy for individualizing medicine? Pers Med 2011;8:161–73.CrossrefGoogle Scholar

  • 4.

    Nikles CJ, Mitchell GK, Del Mar CB, Clavarino A, McNairn N. An n-of-1 trial service in clinical practice: testing the effectiveness of stimulants for attention-deficit/hyperactivity disorder. Pediatrics 2006;117:2040–6.PubMedCrossrefGoogle Scholar

  • 5.

    Nikles J, Mitchell GK, Clavarino A, Yelland MJ, Del Mar CB. Stakeholders’ views on the routine use of n-of-1 trials to improve clinical care and to make resource allocation decisions for drug use. Aust Health Rev 2010;34:131–6.PubMedCrossrefGoogle Scholar

  • 6.

    Strathmann FG. N-of-1 Clinical trials: removing the hay to find the needle. Clin Chem 2015;61:1550–1.CrossrefPubMedGoogle Scholar

  • 7.

    Ning MM, Lo EH. Opportunities and challenges in omics. Transl Stroke Res 2010;1:233–7.PubMedCrossrefGoogle Scholar

  • 8.

    Royal CD, Novembre J, Fullerton SM, Goldstein DB, Long JC, Bamshad MJ, et al. Inferring genetic ancestry: opportunities, challenges, and implications. Am J Hum Genet 2010;86:661–73.CrossrefPubMedGoogle Scholar

  • 9.

    Duncan KD, Fyrestam J, Lanekoff I. Advances in mass spectrometry based single-cell metabolomics. Analyst 2019;144:782–93.CrossrefPubMedGoogle Scholar

  • 10.

    Chen R, Mias GI, Li-Pook-Than J, Jiang LH, Lam HY, Chen R, et al. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 2012;148:1293–307.PubMedCrossrefGoogle Scholar

  • 11.

    Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vazquez-Fresno R, et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 2018;46:D608–17.CrossrefPubMedGoogle Scholar

  • 12.

    Miggiels P, Wouters B, van Westen GJ, Dubbelman A-C, Hankemeier T. Novel technologies for metabolomics: more for less. TrAC Trends Anal Chem 2018. https://doi.org/10.1016/j.trac.2018.11.021

  • 13.

    Chace DH, Kalas TA, Naylor EW. Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns. Clin Chem 2003;49:1797–817.CrossrefPubMedGoogle Scholar

  • 14.

    Wishart DS. Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov 2016;15:473–84.CrossrefPubMedGoogle Scholar

  • 15.

    Wilcken B, Wiley V, Hammond J, Carpenter K. Screening newborns for inborn errors of metabolism by tandem mass spectrometry. N Engl J Med 2003;348:2304–12.PubMedCrossrefGoogle Scholar

  • 16.

    Schulze A, Lindner M, Kohlmuller D, Olgemoller K, Mayatepek E, Hoffmann GF. Expanded newborn screening for inborn errors of metabolism by electrospray ionization-tandem mass spectrometry: results, outcome, and implications. Pediatrics 2003;111:1399–406.CrossrefPubMedGoogle Scholar

  • 17.

    Frazier DM, Millington DS, McCandless SE, Koeberl DD, Weevil SD, Chiang SH, et al. The tandem mass spectrometry newborn screening experience in North Carolina: 1997–2005. J Inherit Metab Dis 2006;29:76–85.CrossrefPubMedGoogle Scholar

  • 18.

    Xia J, Broadhurst DI, Wilson M, Wishart DS. Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics 2013;9:280–99.CrossrefPubMedGoogle Scholar

  • 19.

    Pirhaji L, editor Translating metabolomic data into therapeutics insights using artificial intelligence. Abstr Pap Am Chem S; 2018: Amer Chemical Soc 1155 16th ST, NW, Washington, DC 20036, USA.Google Scholar

  • 20.

    Kuehnbaum NL, Gillen JB, Gibala MJ, Britz-McKibbin P. Personalized metabolomics for predicting glucose tolerance changes in sedentary women after high-intensity interval training. Sci Rep 2014;4:6166.PubMedGoogle Scholar

  • 21.

    Bloszies CS, Fiehn O. Using untargeted metabolomics for detecting exposome compounds. Curr Opin Toxicol 2018;8:87–92.CrossrefGoogle Scholar

  • 22.

    Lai ZJ, Kind T, Fiehn O. Using accurate mass gas chromatography-mass spectrometry with the MINE database for epimetabolite annotation. Anal Chem 2017;89:10171–80.PubMedCrossrefGoogle Scholar

  • 23.

    Parkin DM, Boyd L, Walker LC. The fraction of cancer attributable to lifestyle and environmental factors in the UK in 2010 Summary and conclusions. Br J Can 2011;105:S77–81.CrossrefGoogle Scholar

  • 24.

    Trivedi DK, Hollywood KA, Goodacre R. Metabolomics for the masses: the future of metabolomics in a personalized world. N Horiz Transl Med 2017;3:294–305.Google Scholar

  • 25.

    Topol EJ. Transforming medicine via digital innovation. Sci Transl Med 2010;2:16cm4.PubMedGoogle Scholar

  • 26.

    Van der Greef J, Hankemeier T, McBurney RN. Metabolomics-based systems biology and personalized medicine: moving towards n=1 clinical trials? Pharmacogenomics 2006;7:1087–94.PubMedCrossrefGoogle Scholar

  • 27.

    Baraldi E, Carraro S, Giordano G, Reniero F, Perilongo G, Zacchello F. Metabolomics: moving towards personalized medicine. Ital J Pediatr 2009;35:30.PubMedCrossrefGoogle Scholar

  • 28.

    Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007;3:211–21.CrossrefGoogle Scholar

  • 29.

    Jacob M, Lopata AL, Dasouki M, Abdel Rahman AM. Metabolomics toward personalized medicine. Mass Spectrom Rev 2017. doi: 10.1002/mas.21548. [Epub ahead of print].PubMedGoogle Scholar

  • 30.

    Suhre K, Shin SY, Petersen AK, Mohney RP, Meredith D, Wagele B, et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature 2011;477:54–U60.Google Scholar

  • 31.

    Bouslimani A, Porto C, Rath CM, Wang M, Guo Y, Gonzalez A, et al. Molecular cartography of the human skin surface in 3D. Proc Natl Acad Sci USA 2015;112:E2120–9.CrossrefGoogle Scholar

  • 32.

    Bouslimani A, Melnik AV, Xu Z, Amir A, da Silva RR, Wang M, et al. Lifestyle chemistries from phones for individual profiling. Proc Natl Acad Sci USA 2016;113:E7645–54.CrossrefGoogle Scholar

  • 33.

    Kapono CA, Morton JT, Bouslimani A, Melnik AV, Orlinsky K, Knaan TL, et al. Creating a 3D microbial and chemical snapshot of a human habitat. Sci Rep 2018;8:3669.PubMedCrossrefGoogle Scholar

  • 34.

    Petras D, Nothias L-Fl, Quinn RA, Alexandrov T, Bandeira N, Bouslimani A, et al. Mass spectrometry-based visualization of molecules associated with human habitats. Anal Chem 2016;88:10775–84.PubMedCrossrefGoogle Scholar

  • 35.

    Alexander J, Gildea L, Balog J, Speller A, McKenzie J, Muirhead L, et al. A novel methodology for in vivo endoscopic phenotyping of colorectal cancer based on real-time analysis of the mucosal lipidome: a prospective observational study of the iKnife. Surg Endosc 2017;31:1361–70.CrossrefPubMedGoogle Scholar

  • 36.

    Zhang JL, Rector J, Lin JQ, Young JH, Sans M, Katta N, et al. Nondestructive tissue analysis for ex vivo and in vivo cancer diagnosis using a handheld mass spectrometry system. Sci Transl Med 2017;9.PubMedGoogle Scholar

  • 37.

    Phelps DL, Balog J, Gildea LF, Bodai Z, Savage A, El-Bahrawy MA, et al. The surgical intelligent knife distinguishes normal, borderline and malignant gynaecological tissues using rapid evaporative ionisation mass spectrometry (REIMS). Brit J Can 2018;118:1349–58.CrossrefGoogle Scholar

  • 38.

    Teruya T, Chaleckis R, Takada J, Yanagida M, Kondoh H. Diverse metabolic reactions activated during 58-hr fasting are revealed by non-targeted metabolomic analysis of human blood. Sci Rep 2018;9:854.Google Scholar

  • 39.

    Fan S, Yeon A, Shahid M, Anger JT, Eilber KS, Fiehn O, et al. Sex-associated differences in baseline urinary metabolites of healthy adults. Sci Rep 2018;8:11883.PubMedCrossrefGoogle Scholar

  • 40.

    Darst BF, Koscik RL, Hogan KJ, Johnson SC, Engelman CD. Longitudinal plasma metabolomics of aging and sex. bioRxiv. 2018:436931.Google Scholar

  • 41.

    Bordbar A, McCloskey D, Zielinski DC, Sonnenschein N, Jamshidi N, Palsson BO. Personalized whole-cell kinetic models of metabolism for discovery in genomics and pharmacodynamics. Cell Sys 2015;1:283–92.CrossrefGoogle Scholar

  • 42.

    Misra BB. New tools and resources in metabolomics: 2016–2017. Electrophoresis 2018;39:909–23.CrossrefPubMedGoogle Scholar

  • 43.

    Misra BB, Mohapatra S. Tools and resources for metabolomics research community: a 2017–2018 update. Electrophoresis 2019;40:227–46.PubMedCrossrefGoogle Scholar

  • 44.

    Misra BB, Fahrmann JF, Grapov D. Review of emerging metabolomic tools and resources: 2015–2016. Electrophoresis 2017;38:2257–74.PubMedCrossrefGoogle Scholar

  • 45.

    Misra BB, van der Hooft JJ. Updates in metabolomics tools and resources: 2014–2015. Electrophoresis 2016;37:86–110.CrossrefPubMedGoogle Scholar

  • 46.

    Schoen EJ, Baker JC, Colby CJ, To TT. Cost-benefit analysis of universal tandem mass spectrometry for newborn screening. Pediatrics 2002;110:781–6.CrossrefPubMedGoogle Scholar

  • 47.

    Ulaszewski MM, Weinert CH, Trimigno A, Portmann R, Lacueva CA, Badertscher R, et al. Nutri metabolomics: an integrative action for metabolomic analyses in human nutritional studies. Mol Nutr Food Res 2019;63:e1800384.CrossrefGoogle Scholar

  • 48.

    Bowden JA, Heckert A, Ulmer CZ, Jones CM, Koelmel JP, Abdullah L, et al. Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950-Metabolites in Frozen Human Plasma. J Lip Res 2017;58:2275–88.CrossrefGoogle Scholar

  • 49.

    Sheen D, Benner B, Simon Y, Rocha WF, Jones C, Blonder N, et al. Data harmonization in metabolomics for quality assurance and control. Abstr Pap Am Chem S 2018;256:1155.Google Scholar

  • 50.

    Broadhurst D, Goodacre R, Reinke SN, Kuligowski J, Wilson ID, Lewis MR, et al. Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics 2018;14:72.CrossrefPubMedGoogle Scholar

  • 51.

    Smelter A, Moseley HN. A Python library for FAIRer access and deposition to the Metabolomics Workbench Data Repository. Metabolomics 2018;14:64.Google Scholar

  • 52.

    Peters K, Bradbury J, Bergmann S, Capuccini M, Cascante M, de Atauri P, et al. PhenoMeNal: Processing and analysis of Metabolomics data in the Cloud. bioRxiv. 2018:409151.Google Scholar

  • 53.

    Warth B, Levin N, Rinehart D, Teijaro J, Benton HP, Siuzdak G. Metabolizing data in the cloud. Trends Biotechnol 2017;35:481–3.PubMedCrossrefGoogle Scholar

  • 54.

    Domingo-Almenara X, Montenegro-Burke JR, Ivanisevic J, Thomas A, Sidibé J, Teav T, et al. XCMS-MRM and METLIN-MRM: a cloud library and public resource for targeted analysis of small molecules. Nat Methods 2018;15:681.CrossrefPubMedGoogle Scholar

  • 55.

    Misra BB, Langefeld CD, Olivier M, Cox LA. Integrated omics: tools, advances, and future approaches. J Mol Endocrinol 2018;62:R21–45.Google Scholar

About the article

Corresponding author: Biswapriya Misra, PhD, Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, 27157 NC, USA, Twitter: @BiswapriyaMisra

Received: 2019-02-03

Accepted: 2019-03-04

Published Online: 2019-04-05

Author contribution: The sole author (BBM) has accepted responsibility for the entire content of this submitted manuscript and submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Conflicts of Interest: The author declares that the review was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The author does not endorse or promote any commercial brands mentioned in this review and are cited only for academic reasons.

Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), 20190130, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/cclm-2019-0130.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in