Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Greaves, Ronda / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter

IMPACT FACTOR 2018: 3.638

CiteScore 2018: 2.44

SCImago Journal Rank (SJR) 2018: 1.191
Source Normalized Impact per Paper (SNIP) 2018: 1.205

See all formats and pricing
More options …
Ahead of print


Preanalytical robustness of blood collection tubes with RNA stabilizers

Chiara Stellino / Gaël Hamot / Camille Bellora / Johanna Trouet / Fay Betsou
Published Online: 2019-05-21 | DOI: https://doi.org/10.1515/cclm-2019-0170



Efficient blood stabilization is essential to obtaining reliable and comparable RNA analysis data in preclinical operations. PAXgene (Qiagen, Becton Dickinson) and Tempus (Applied Biosystems, Life Technologies) blood collection tubes with RNA stabilizers both avoid preanalytical degradation of mRNA by endogenous nucleases and modifications in specific mRNA concentrations by unintentional up- or down-regulation of gene expression.


Sixteen different preanalytical conditions were tested in PAXgene and Tempus blood samples from seven donors: different mixing after collection, different fill volumes and different 24-h transport temperature conditions after collection. RNA was extracted by column-based methods. The quality of the extracted RNA was assessed by spectrophotometric quantification, A260/A280 purity ratio, RNA Integrity Number (Agilent Bioanalyzer), miRNA quantative real time polymerase chain reaction (qRT-PCR) on two target miRNAs (RNU-24 and miR-16), mRNA quality index by qRT-PCR on the 3′ and 5′ region of the GAPDH gene, and the PBMC preanalytical score, based on the relative expression levels of the IL8 and EDEM3 coding genes.


When PAXgene RNA and Tempus blood collection tubes were used following the manufacturers’ instructions, there was no statistically or technically significant difference in the output RNA quality attributes. However, the integrity of the RNA extracted from Tempus collection tubes was more sensitive to fill volumes and effective inversion, than to storage temperature, while the integrity of RNA extracted from PAXgene collection tubes was more sensitive to effective inversion and storage temperature than to fill volumes.


Blood collection tubes with different RNA stabilizers present different robustness to common preanalytical variations.

Keywords: PAXgene; preanalytics; RNA stabilizers; robustness; Tempus


  • 1.

    Baechler E, Batliwalla F, Karypis G, Gaffney P, Moser K, Ortmann W, et al. Expression levels for many genes in human peripheral blood cells are highly sensitive to ex vivo incubation. Genes Immun 2004;5:347–53.PubMedCrossrefGoogle Scholar

  • 2.

    Debey-Pascher S, Hofmann A, Kreusch F, Schuler G, Schuler-Thurner B, Schultze JL, et al. RNA-stabilized whole blood samples but not peripheral blood mononuclear cells can be stored for prolonged time periods prior to transcriptome analysis. J Mol Diagn 2011;13:452–60.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 3.

    Zhang H, Korenkova V, Sjöback R, Svec D, Björkman J, Kruhoffer M, et al. Biomarkers for monitoring preanalytical quality variation of mRNA in blood samples. PLoS One 2014;9:e111644.CrossrefGoogle Scholar

  • 4.

    Malentacchi F, Pizzamiglio S, Wyrich R, Verderio P, Ciniselli C, Pazzagli M, et al. Effects of transport and storage conditions on gene expression in blood samples. Biopreserv Biobank 2016;14:122–8.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 5.

    Rainen L, Oelmueller U, Jurgensen S, Wyrich R, Ballas C, Schram J, et al. Stabilization of mRNA expression in whole blood samples. Clin Chem 2002;48:1883–90.PubMedGoogle Scholar

  • 6.

    Aarem J, Brunborg G, Aas KK, Harbak K, Taipale MM, Magnus P, et al. Comparison of blood RNA isolation methods from samples stabilized in Tempus tubes and stored at a large human biobank. BMC Res Notes 2016;9:430.CrossrefGoogle Scholar

  • 7.

    German National Cohort (GNC) Consortium. The German National Cohort: aims, study design and organization. Eur J Epidemiol 2014;29:371–82.Web of SciencePubMedGoogle Scholar

  • 8.

    Hipp G, Vaillant M, Diederich NJ, Roomp K, Satagopam VP, Banda P, et al. The Luxembourg Parkinson’s study: a comprehensive approach for stratification and early diagnosis. Front Aging Neurosci 2018;10:326.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 9.

    Menke A, Rex-Haffner M, Klengel T, Binder EB, Mehta D. Peripheral blood gene expression: it all boils down to the RNA collection tubes. BMC Res Notes 2012;5:1.CrossrefPubMedGoogle Scholar

  • 10.

    Nikula T, Mykkänen J, Simell O, Lahesmaa R. Genome-wide comparison of two RNA-stabilizing reagents for transcriptional profiling of peripheral blood. Trans Res 2013;161:181–8.CrossrefGoogle Scholar

  • 11.

    Kågedal B, Lindqvist M, Farnebäck M, Lenner L, Peterson C. Failure of the PAXgene™ Blood RNA System to maintain mRNA stability in whole blood. Clin Chem Lab Med 2005;43:1190–2.Google Scholar

  • 12.

    Wright C, Bergstrom D, Dai H, Marton M, Morris M, Tokiwa G, et al. Characterization of globin RNA interference in gene expression profiling of whole-blood samples. Clin Chem 2008;54:396–405.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 13.

    Bayatti N, Cooper-Knock J, Bury JJ, Wyles M, Heath PR, Kirby J, et al. Comparison of blood RNA extraction methods used for gene expression profiling in amyotrophic lateral sclerosis. PLoS One 2014;9:e87508.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 14.

    Duale N, Lipkin WI, Briese T, Aarem J, Rønningen KS, Aas KK, et al. Long-term storage of blood RNA collected in RNA stabilizing Tempus tubes in a large biobank – evaluation of RNA quality and stability. BMC Res Notes 2014;7:633.CrossrefGoogle Scholar

  • 15.

    PAXgene. Technical Note: PAXgene® Blood RNA System. 2014. Accessed 7/12/2018.Google Scholar

  • 16.

    Chai V, Vassilakos A, Lee Y, Wright JA, Young AH. Optimization of the PAXgene™ blood RNA extraction system for gene expression analysis of clinical samples. J Clin Lab Anal 2005;19:182–8.CrossrefGoogle Scholar

  • 17.

    Mathay C, Hamot G, Henry E, Mommaerts K, Thorlaksdottir A, Trouet J, et al. Method validation for extraction of nucleic acids from peripheral whole blood. Biopreserv Biobank 2016;14:520–9.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 18.

    Kofanova O, Bellora C, Quesada RA, Bulla A, Panadero-Fajardo S, Keipes M, et al. IL8 and EDEM3 gene expression ratio indicates peripheral blood mononuclear cell (PBMC) quality. J Immunol Methods 2018;465:13–9.PubMedGoogle Scholar

  • 19.

    Tempus. Tempus™ Spin RNA Isolation Kit: Quick Reference Card. 2008. Accessed 2018.Google Scholar

  • 20.

    Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, et al. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 2006;7:3.PubMedCrossrefGoogle Scholar

  • 21.

    Vermeulen J, De Preter K, Lefever S, Nuytens J, De Vloed F, Derveaux S, et al. Measurable impact of RNA quality on gene expression results from quantitative PCR. Nucleic Acids Res 2011;39:e63.Web of ScienceCrossrefPubMedGoogle Scholar

  • 22.

    Gallego Romero I, Pai AA, Tung J, Gilad Y. RNA-seq: impact of RNA degradation on transcript quantification. BMC Biol 2014;12:42.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 23.

    Häntzsch M, Tolios A, Beutner F, Nagel D, Thiery J, Teupser D, et al. Comparison of whole blood RNA preservation tubes and novel generation RNA extraction kits for analysis of mRNA and MiRNA profiles. PLoS ONE 2014;9:e113298.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 24.

    Günther K, Malentacchi F, Verderio P, Pizzamiglio S, Ciniselli CM, Tichopad A, et al. Implementation of a proficiency testing for the assessment of the preanalytical phase of blood samples used for RNA based analysis. Clin Chim Acta 2012;413:779–86.Web of ScienceCrossrefPubMedGoogle Scholar

About the article

Corresponding author: Fay Betsou, PhD, HDR, IBBL, 1 rue Louis Rech, Dudelange 3555, Luxembourg, Phone: +352 26 970 556

Received: 2019-02-12

Accepted: 2019-04-08

Published Online: 2019-05-21

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), 20190170, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/cclm-2019-0170.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in