Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Greaves, Ronda / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter

IMPACT FACTOR 2018: 3.638

CiteScore 2018: 2.44

SCImago Journal Rank (SJR) 2018: 1.191
Source Normalized Impact per Paper (SNIP) 2018: 1.205

See all formats and pricing
More options …
Ahead of print


Diagnostic performance of cerebrospinal fluid free light chains in Lyme neuroborreliosis – a pilot study

Ivar Tjernberg
  • Corresponding author
  • Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
  • Department of Clinical Chemistry and Transfusion Medicine, Region Kalmar County, Kalmar, Sweden
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marcus Johansson
  • Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
  • Department of Clinical Microbiology, Region Kalmar County, Kalmar, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anna J. Henningsson
  • Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
  • Clinical Microbiology, Region Jönköping County, Jönköping, Sweden
  • Clinical Microbiology, Region Östergötland, Linköping, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-06-13 | DOI: https://doi.org/10.1515/cclm-2019-0315



The aim of this study was to evaluate the diagnostic performance of cerebrospinal fluid (CSF) free light chains (FLCs) in the diagnosis of Lyme neuroborreliosis (LNB).


Serum and CSF levels of κ- and λ-FLC, albumin and total concentration of immunoglobulin M (IgM) were determined together with CSF chemokine CXCL13 in 23 patients with definite LNB, 35 inflammatory neurological disease control (INDC) and 18 non-inflammatory control (NIC) patients. Indices and intrathecal fractions (IFs) of FLC and IgM were calculated.


Significant differences in FLC indices and IFs were found between the LNB group and both control groups, p ≤ 0.007. Sensitivity of intrathecal κ- and λ-FLC synthesis reached 78%–87% in LNB patients with a specificity of 94%–100% in NIC patients, whereas specificity in INDC patients was 69%. The corresponding frequencies of positive results for IF and index of IgM and CSF CXCL13 in these three diagnostic groups were 74%–96% in LNB patients, 0% in NIC patients and 3%–6% in INDC patients at the chosen cut-off levels.


The findings of this study show a moderate to high sensitivity of CSF κ- and λ-FLC in LNB patients with a high specificity in NIC patients. However, overlap in CSF κ- and λ-FLC levels between LNB and INDC patients calls for caution in the interpretation and limits the diagnostic usefulness in the LNB diagnosis. CSF CXCL13 appears to be the most valuable additional biomarker of LNB aside from routine parameters such as CSF pleocytosis and anti-Borrelia antibody index.

Keywords: cerebrospinal fluid; diagnosis; free light chain; Lyme neuroborreliosis


  • 1.

    Stanek G, Wormser GP, Gray J, Strle F. Lyme borreliosis. Lancet 2012;379:461–73.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 2.

    Steere AC, Strle F, Wormser GP, Hu LT, Branda JA, Hovius JW, et al. Lyme borreliosis. Nat Rev Dis Primers 2016;2:16090.CrossrefPubMedGoogle Scholar

  • 3.

    Berglund J, Eitrem R, Ornstein K, Lindberg A, Ringer A, Elmrud H, et al. An epidemiologic study of Lyme disease in southern Sweden. N Engl J Med 1995;333:1319–27.CrossrefPubMedGoogle Scholar

  • 4.

    Cimmino MA. Relative frequency of Lyme borreliosis and of its clinical manifestations in Europe. European Community Concerted Action on Risk Assessment in Lyme Borreliosis. Infection 1998;26:298–300.PubMedCrossrefGoogle Scholar

  • 5.

    Mygland A, Ljostad U, Fingerle V, Rupprecht T, Schmutzhard E, Steiner I, et al. EFNS guidelines on the diagnosis and management of European Lyme neuroborreliosis. Eur J Neurol 2010;17:8–16, e1–4.Web of ScienceCrossrefPubMedGoogle Scholar

  • 6.

    Blanc F, Jaulhac B, Fleury M, de Seze J, de Martino SJ, Remy V, et al. Relevance of the antibody index to diagnose Lyme neuroborreliosis among seropositive patients. Neurology 2007;69:953–8.CrossrefPubMedGoogle Scholar

  • 7.

    Hansen K, Lebech AM. Lyme neuroborreliosis: a new sensitive diagnostic assay for intrathecal synthesis of Borrelia burgdorferi-specific immunoglobulin G, A, and M. Ann Neurol 1991;30:197–205.CrossrefGoogle Scholar

  • 8.

    Ljostad U, Skarpaas T, Mygland A. Clinical usefulness of intrathecal antibody testing in acute Lyme neuroborreliosis. Eur J Neurol 2007;14:873–6.Web of SciencePubMedCrossrefGoogle Scholar

  • 9.

    Strle F, Ruzic-Sabljic E, Cimperman J, Lotric-Furlan S, Maraspin V. Comparison of findings for patients with Borrelia garinii and Borrelia afzelii isolated from cerebrospinal fluid. Clin Infect Dis 2006;43:704–10.CrossrefPubMedGoogle Scholar

  • 10.

    Tjernberg I, Henningsson AJ, Eliasson I, Forsberg P, Ernerudh J. Diagnostic performance of cerebrospinal fluid chemokine CXCL13 and antibodies to the C6-peptide in Lyme neuroborreliosis. J Infect 2011;62:149–58.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 11.

    Rupprecht TA, Manz KM, Fingerle V, Lechner C, Klein M, Pfirrmann M, et al. Diagnostic value of cerebrospinal fluid CXCL13 for acute Lyme neuroborreliosis. A systematic review and meta-analysis. Clin Microbiol Infect 2018;24:1234–40.Web of SciencePubMedCrossrefGoogle Scholar

  • 12.

    Tumani H, Nolker G, Reiber H. Relevance of cerebrospinal fluid variables for early diagnosis of neuroborreliosis. Neurology 1995;45:1663–70.CrossrefPubMedGoogle Scholar

  • 13.

    Skogman BH, Lager M, Henningsson AJ, Tjernberg I. The recomBead Borrelia antibody index, CXCL13 and total IgM index for laboratory diagnosis of Lyme neuroborreliosis in children. Eur J Clin Microbiol Infect Dis 2017;36:2221–9.Web of ScienceCrossrefPubMedGoogle Scholar

  • 14.

    Nakano T, Matsui M, Inoue I, Awata T, Katayama S, Murakoshi T. Free immunoglobulin light chain: its biology and implications in diseases. Clin Chim Acta 2011;412:843–9.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 15.

    Passerini G, Dalla Costa G, Sangalli F, Moiola L, Colombo B, Locatelli M, et al. Free light chains and intrathecal b cells activity in multiple sclerosis: a prospective study and meta-analysis. Mult Scler Int 2016;2016:2303857.Web of SciencePubMedGoogle Scholar

  • 16.

    Presslauer S, Milosavljevic D, Huebl W, Parigger S, Schneider-Koch G, Bruecke T. Kappa free light chains: diagnostic and prognostic relevance in MS and CIS. PLoS One 2014;9:e89945.Web of ScienceCrossrefPubMedGoogle Scholar

  • 17.

    Hegen H, Milosavljevic D, Schnabl C, Manowiecka A, Walde J, Deisenhammer F, et al. Cerebrospinal fluid free light chains as diagnostic biomarker in neuroborreliosis. Clin Chem Lab Med 2018;56:1383–91.CrossrefWeb of SciencePubMedGoogle Scholar

  • 18.

    Senel M, Tumani H, Lauda F, Presslauer S, Mojib-Yezdani R, Otto M, et al. Cerebrospinal fluid immunoglobulin kappa light chain in clinically isolated syndrome and multiple sclerosis. PLoS One 2014;9:e88680.Web of ScienceCrossrefPubMedGoogle Scholar

  • 19.

    Teunissen C, Menge T, Altintas A, Alvarez-Cermeno JC, Bertolotto A, Berven FS, et al. Consensus definitions and application guidelines for control groups in cerebrospinal fluid biomarker studies in multiple sclerosis. Mult Scler 2013;19:1802–9.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 20.

    Reiber H. Flow rate of cerebrospinal fluid (CSF) – a concept common to normal blood-CSF barrier function and to dysfunction in neurological diseases. J Neurol Sci 1994;122:189–203.CrossrefPubMedGoogle Scholar

  • 21.

    Henningsson AJ, Malmvall BE, Ernerudh J, Matussek A, Forsberg P. Neuroborreliosis – an epidemiological, clinical and healthcare cost study from an endemic area in the south-east of Sweden. Clin Microbiol Infect 2010;16:1245–51.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 22.

    Strle F, Stanek G. Clinical manifestations and diagnosis of lyme borreliosis. Curr Probl Dermatol 2009;37:51–110.PubMedCrossrefGoogle Scholar

  • 23.

    Christiansen M, Gjelstrup MC, Stilund M, Christensen T, Petersen T, Jon Moller H. Cerebrospinal fluid free kappa light chains and kappa index perform equal to oligoclonal bands in the diagnosis of multiple sclerosis. Clin Chem Lab Med 2018;57:210–20.Web of ScienceCrossrefGoogle Scholar

  • 24.

    Menendez-Valladares P, Garcia-Sanchez MI, Adorna Martinez M, Garcia De Veas Silva JL, Bermudo Guitarte C, Izquierdo Ayuso G. Validation and meta-analysis of kappa index biomarker in multiple sclerosis diagnosis. Autoimmun Rev 2019;18:43–9.CrossrefWeb of SciencePubMedGoogle Scholar

  • 25.

    Blennow K, Skoog I, Wallin A, Wikkelso C, Fredman P. Immunoglobulin M in cerebrospinal fluid: reference values derived from 111 healthy individuals 18–88 years of age. Eur Neurol 1996;36:201–5.PubMedCrossrefGoogle Scholar

  • 26.

    Fipps DR, Damato JJ, Brandt B, Burke DS. Effects of multiple freeze thaws and various temperatures on the reactivity of human immunodeficiency virus antibody using three detection assays. J Virol Methods 1988;20:127–32.CrossrefPubMedGoogle Scholar

  • 27.

    Gislefoss RE, Grimsrud TK, Morkrid L. Stability of selected serum proteins after long-term storage in the Janus Serum Bank. Clin Chem Lab Med 2009;47:596–603.Web of SciencePubMedGoogle Scholar

  • 28.

    Hart J, Miller C, Tang X, Vafai A. Stability of varicella-zoster virus and herpes simplex virus IgG monoclonal antibodies. J Immunoassay Immunochem 2009;30:180–5.CrossrefPubMedGoogle Scholar

  • 29.

    Mannisto T, Surcel HM, Bloigu A, Ruokonen A, Hartikainen AL, Jarvelin MR, et al. The effect of freezing, thawing, and short- and long-term storage on serum thyrotropin, thyroid hormones, and thyroid autoantibodies: implications for analyzing samples stored in serum banks. Clin Chem 2007;53:1986–7.CrossrefWeb of ScienceGoogle Scholar

  • 30.

    Nelson LS, Steussy B, Morris CS, Krasowski MD. Effect of specimen type on free immunoglobulin light chains analysis on the Roche Diagnostics cobas 8000 analyzer. Springerplus 2015;4:760.Web of ScienceCrossrefPubMedGoogle Scholar

  • 31.

    Tate JR, Gill D, Cobcroft R, Hickman PE. Practical considerations for the measurement of free light chains in serum. Clin Chem 2003;49:1252–7.PubMedCrossrefGoogle Scholar

  • 32.

    Pieri M, Pignalosa S, Dinallo V, Crisanti A, Casalino P, Bernardini S, et al. Free light chains nephelometric assay: human urine stability in different storage conditions. Clin Chem Lab Med 2016;54:e273–4.Web of SciencePubMedGoogle Scholar

  • 33.

    Skogman BH, Croner S, Nordwall M, Eknefelt M, Ernerudh J, Forsberg P. Lyme neuroborreliosis in children: a prospective study of clinical features, prognosis, and outcome. Pediatr Infect Dis J 2008;27:1089–94.CrossrefWeb of SciencePubMedGoogle Scholar

  • 34.

    Tveitnes D, Oymar K, Natas O. Laboratory data in children with Lyme neuroborreliosis, relation to clinical presentation and duration of symptoms. Scand J Infect Dis 2009;41:355–62.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 35.

    Ruet A. Update on pediatric-onset multiple sclerosis. Rev Neurol (Paris) 2018;174:398–407.CrossrefPubMedGoogle Scholar

  • 36.

    Krumbholz M, Theil D, Cepok S, Hemmer B, Kivisakk P, Ransohoff RM, et al. Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain 2006;129:200–11.PubMedCrossrefGoogle Scholar

  • 37.

    Ljostad U, Mygland A. CSF B – lymphocyte chemoattractant (CXCL13) in the early diagnosis of acute Lyme neuroborreliosis. J Neurol 2008;255:732–7.CrossrefPubMedGoogle Scholar

  • 38.

    Rupprecht TA, Pfister HW, Angele B, Kastenbauer S, Wilske B, Koedel U. The chemokine CXCL13 (BLC): a putative diagnostic marker for neuroborreliosis. Neurology 2005;65:448–50.PubMedCrossrefGoogle Scholar

  • 39.

    Sellebjerg F, Bornsen L, Khademi M, Krakauer M, Olsson T, Frederiksen JL, et al. Increased cerebrospinal fluid concentrations of the chemokine CXCL13 in active MS. Neurology 2009;73:2003–10.CrossrefWeb of SciencePubMedGoogle Scholar

  • 40.

    Housley WJ, Pitt D, Hafler DA. Biomarkers in multiple sclerosis. Clin Immunol 2015;161:51–8.PubMedCrossrefGoogle Scholar

About the article

Corresponding author: Ivar Tjernberg, MD, PhD, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden; and Department of Clinical Chemistry and Transfusion Medicine, Region Kalmar County, Kalmar, Sweden, Phone: +46 480 83150

Received: 2019-03-21

Accepted: 2019-05-18

Published Online: 2019-06-13

Author contributions: I. Tjernberg participated in the conception and design of the study, acquisition and statistical analysis of the data and in drafting of the manuscript. M. Johansson participated in acquisition of the data and in reviewing of the manuscript for intellectual content. A.J. Henningsson participated in reviewing of the manuscript for intellectual content. All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: This study was conducted with support from the Medical Research Council of Southeast Sweden (FORSS).

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), 20190315, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/cclm-2019-0315.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in