Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Clinical Chemistry and Laboratory Medicine (CCLM)

Published in Association with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Editor-in-Chief: Plebani, Mario

Ed. by Gillery, Philippe / Greaves, Ronda / Lackner, Karl J. / Lippi, Giuseppe / Melichar, Bohuslav / Payne, Deborah A. / Schlattmann, Peter


IMPACT FACTOR 2018: 3.638

CiteScore 2018: 2.44

SCImago Journal Rank (SJR) 2018: 1.191
Source Normalized Impact per Paper (SNIP) 2018: 1.205

Online
ISSN
1437-4331
See all formats and pricing
More options …
Ahead of print

Issues

Cord blood S100B: reference ranges and interest for early identification of newborns with brain injury

Damien Bouvier
  • Corresponding author
  • Service de Biochimie Médicale, Centre de Biologie, CHU Gabriel Montpied, 58 Rue Montalembert, 63000 Clermont-Ferrand, France
  • Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
  • Université Clermont Auvergne, Faculty of Medicine, CNRS 6293, INSERM 1103, GReD, Clermont-Ferrand, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yves Giguère
  • Centre de recherche du CHU de Québec-Université Laval, Québec City, Canada
  • Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec City, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bruno Pereira / Nathalie Bernard / Isabelle Marc
  • Centre de recherche du CHU de Québec-Université Laval, Québec City, Canada
  • Department of Pediatrics, Faculty of Medicine, Université Laval, Québec City, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vincent Sapin
  • Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
  • Université Clermont Auvergne, Faculty of Medicine, CNRS 6293, INSERM 1103, GReD, Clermont-Ferrand, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jean-Claude Forest
  • Centre de recherche du CHU de Québec-Université Laval, Québec City, Canada
  • Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec City, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-10-17 | DOI: https://doi.org/10.1515/cclm-2019-0737

Abstract

Background

Neurological complications are common in the premature and full-term neonates admitted to the intensive care unit, but the diagnosis of these complications is often difficult to make. S100B protein, measured in cord blood, may represent a valuable tool to better identify patients at risk of brain injury.

Methods

As a first step, we established S100B cord blood serum reference intervals from 183 preterm and 200 full-term neonates. We then measured cord blood serum S100B to identify neurological complications in 272 neonates hospitalized at the neonatal intensive care unit (NICU). Diagnosis of brain injury relied on imaging examination.

Results

The 95th percentiles of S100B concentration in cord blood were established as 1.21 μg/L for the 383 neonates, 0.96 μg/L for full-term neonates and 1.36 μg/L for premature neonates. Among the 272 neonates hospitalized at the NICU, 11 presented neurological complications. Using 1.27 μg/L as the optimal sensitivity/specificity threshold, S100B differentiate neonates with and without neurological complications with a sensitivity of 45.5% (95% confidence intervals [CI]: 16.7–76.6) and a specificity of 88.9% (95% CI: 84.4–92.4) (p = 0.006). In combination with arterial pH (<7.25), sensitivity increased to 90.9% (95% CI: 58.7–99.8), while specificity was 51.2% (95% CI: 44.8–57.7). The sensitivity is significantly (p = 0.03) increased in comparison to S100B alone. The specificity is significantly higher with S100B only than with pH + S100B (p < 0.001).

Conclusions

Cord blood S100B protein, in combination with arterial cord blood pH, has the potential to help clinicians to detect at birth neurological complications in neonates hospitalized in an NCIU.

Keywords: brain injury; cord blood; neurological complications; reference ranges; S100B

References

  • 1.

    World Health Organization. WHO: recommended definitions, terminology and format for statistical tables related to the perinatal period and use of a new certificate for cause of perinatal deaths. Modifications recommended by FIGO as amended October 14, 1976. Acta Obstet Gynecol Scand 1977;56:247–53.PubMedGoogle Scholar

  • 2.

    Martin JA, Hamilton BE, Sutton PD, Ventura SJ, Mathews TJ, Kirmeyer S, et al. Births: final data for 2007. Natl Vital Stat Rep 2010;58:1–85.Google Scholar

  • 3.

    Chawanpaiboon S, Vogel JP, Moller A-B, Lumbiganon P, Petzold M, Hogan D, et al. Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. Lancet Glob Health 2019;7:e37–46.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 4.

    Kinney HC. The near-term (late preterm) human brain and risk for periventricular leukomalacia: a review. Semin Perinatol 2006;30:81–8.PubMedCrossrefGoogle Scholar

  • 5.

    Ramenghi LA. Late preterm babies and the risk of neurological damage. Acta Biomed 2015;86(Suppl 1):36–40.PubMedGoogle Scholar

  • 6.

    Al-Abdi SY, Al-Aamri MA. A systematic review and meta-analysis of the timing of early intraventricular hemorrhage in preterm neonates: clinical and research implications. J Clin Neonatol 2014;3:76–88.CrossrefPubMedGoogle Scholar

  • 7.

    Gopagondanahalli KR, Li J, Fahey MC, Hunt RW, Jenkin G, Miller SL, et al. Preterm hypoxic-ischemic encephalopathy. Front Pediatr 2016;4:114.Web of SciencePubMedGoogle Scholar

  • 8.

    Volpe JJ. Brain injury in the premature infant: overview of clinical aspects, neuropathology, and pathogenesis. Semin Pediatr Neurol 1998;5:135–51.PubMedCrossrefGoogle Scholar

  • 9.

    Triulzi F, Parazzini C, Righini A. Patterns of damage in the mature neonatal brain. Pediatr Radiol 2006;36:608–20.CrossrefPubMedGoogle Scholar

  • 10.

    Zimmer DB, Cornwall EH, Landar A, Song W. The S100 protein family: history, function, and expression. Brain Res Bull 1995;37:417–29.CrossrefPubMedGoogle Scholar

  • 11.

    Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol 2001;33:637–68.PubMedCrossrefGoogle Scholar

  • 12.

    Petzold A, Keir G, Lim D, Smith M, Thompson EJ. Cerebrospinal fluid (CSF) and serum S100B: release and wash-out pattern. Brain Res Bull 2003;61:281–5.CrossrefPubMedGoogle Scholar

  • 13.

    Lu H, Huang W, Chen X, Wang Q, Zhang Q, Chang M. Relationship between premature brain injury and multiple biomarkers in cord blood and amniotic fluid. J Matern Fetal Neonatal Med 2018;31:2898–904.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 14.

    Costantine MM, Weiner SJ, Rouse DJ, Hirtz DG, Varner MW, Spong CY, et al. Umbilical cord blood biomarkers of neurologic injury and the risk of cerebral palsy or infant death. Int J Dev Neurosci 2011;29:917–22.Web of ScienceCrossrefPubMedGoogle Scholar

  • 15.

    Summanen M, Seikku L, Rahkonen P, Stefanovic V, Teramo K, Andersson S, et al. Comparison of umbilical serum copeptin relative to erythropoietin and S100B as asphyxia biomarkers at birth. Neonatology 2017;112:60–6.CrossrefWeb of SciencePubMedGoogle Scholar

  • 16.

    Zaigham M, Lundberg F, Olofsson P. Protein S100B in umbilical cord blood as a potential biomarker of hypoxic-ischemic encephalopathy in asphyxiated newborns. Early Hum Dev 2017;112:48–53.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 17.

    Bouvier D, Fournier M, Dauphin J-B, Amat F, Ughetto S, Labbe A, et al. Serum S100B determination in the management of pediatric mild traumatic brain injury. Clin Chem 2012;58:1116–22.CrossrefWeb of SciencePubMedGoogle Scholar

  • 18.

    Gazzolo D, Michetti F, Bruschettini M, Marchese N, Lituania M, Mangraviti S, et al. Pediatric concentrations of S100B protein in blood: age- and sex-related changes. Clin Chem 2003;49(6 Pt 1):967–70.PubMedCrossrefGoogle Scholar

  • 19.

    Gazzolo D, Vinesi P, Marinoni E, Di Iorio R, Marras M, Lituania M, et al. S100B protein concentrations in cord blood: correlations with gestational age in term and preterm deliveries. Clin Chem 2000;46:998–1000.PubMedGoogle Scholar

  • 20.

    Oris C, Pereira B, Durif J, Simon-Pimmel J, Castellani C, Manzano S, et al. The biomarker S100B and mild traumatic brain injury: a meta-analysis. Pediatrics 2018;141:e20180037.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 21.

    Forest J-C, Theriault S, Masse J, Bujold E, Giguere Y. Soluble fms-like tyrosine kinase-1 to placental growth factor ratio in mid-pregnancy as a predictor of preterm preeclampsia in asymptomatic pregnant women. Clin Chem Lab Med 2014;52:1169–78.PubMedWeb of ScienceGoogle Scholar

  • 22.

    Schulpis KH, Margeli A, Akalestos A, Vlachos GD, Partsinevelos GA, Papastamataki M, et al. Effects of mode of delivery on maternal-neonatal plasma antioxidant status and on protein S100B serum concentrations. Scand J Clin Lab Invest 2006;66:733–42.PubMedCrossrefGoogle Scholar

  • 23.

    Agarwal MM. Gestational diabetes mellitus: an update on the current international diagnostic criteria. World J Diabetes 2015;6:782–91.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 24.

    Wollmann HA. Intrauterine growth restriction: definition and etiology. Horm Res 1998;49(Suppl 2):1–6.CrossrefGoogle Scholar

  • 25.

    Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr 1978;92:529–34.CrossrefPubMedGoogle Scholar

  • 26.

    Shankaran S, McDonald SA, Laptook AR, Hintz SR, Barnes PD, Das A, et al. Neonatal magnetic resonance imaging pattern of brain injury as a biomarker of childhood outcomes following a trial of hypothermia for neonatal hypoxic-ischemic encephalopathy. J Pediatr 2015;167:987–993.e3.Google Scholar

  • 27.

    Sarnat HB, Sarnat MS. Neonatal encephalopathy following fetal distress. A clinical and electroencephalographic study. Arch Neurol 1976;33:696–705.CrossrefPubMedGoogle Scholar

  • 28.

    Simon-Pimmel J, Lorton F, Masson D, Bouvier D, Hanf M, Gras-Le Guen C. Reference ranges for serum S100B neuroprotein specific to infants under four months of age. Clin Biochem 2017;50:1056–60.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 29.

    Kahyaoglu I, Kayikcioglu F, Gucel F, Demirtas C, Ozdemirci S, Mollamahmutoglu L. Umbilical CORD S100B levels in active and passive smoker women. Eur Rev Med Pharmacol Sci 2014;18:723–7.PubMedGoogle Scholar

  • 30.

    Serpero LD, Bianchi V, Pluchinotta F, Conforti E, Baryshnikova E, Guaschino R, et al. S100B maternal blood levels are gestational age- and gender-dependent in healthy pregnancies. Clin Chem Lab Med 2017;55:1770–6.Web of SciencePubMedGoogle Scholar

  • 31.

    Irmak K, Tuten N, Karaoglu G, Madazli R, Tuten A, Malik E, et al. Evaluation of cord blood creatine kinase (CK), cardiac troponin T (cTnT), N-terminal-pro-B-type natriuretic peptide (NT-proBNP), and s100B level in nonreassuring foetal heart rate. J Matern Fetal Neonatal Med 2019;32:1–6.Google Scholar

  • 32.

    Jackson P, Thompson RJ. The demonstration of new human brain-specific proteins by high-resolution two-dimensional polyacrylamide gel electrophoresis. J Neurol Sci 1981;49:429–38.CrossrefPubMedGoogle Scholar

  • 33.

    Serpero LD, Pluchinotta F, Gazzolo D. The clinical and diagnostic utility of S100B in preterm newborns. Clin Chim Acta 2015;444:193–8.Web of SciencePubMedCrossrefGoogle Scholar

  • 34.

    Chalak LF, Sanchez PJ, Adams-Huet B, Laptook AR, Heyne RJ, Rosenfeld CR. Biomarkers for severity of neonatal hypoxic-ischemic encephalopathy and outcomes in newborns receiving hypothermia therapy. J Pediatr 2014;164:468–474.e1.Google Scholar

  • 35.

    Zaigham M, Lundberg F, Hayes R, Unden J, Olofsson P. Umbilical cord blood concentrations of ubiquitin carboxy- terminal hydrolase L1 (UCH-L1) and glial fibrillary acidic protein (GFAP) in neonates developing hypoxic-ischemic encephalopathy. J Matern Fetal Neonatal Med 2016;29: 1822–8.Web of SciencePubMedGoogle Scholar

  • 36.

    Looney A-M, Ahearne C, Boylan GB, Murray DM. Glial fibrillary acidic protein is not an early marker of injury in perinatal asphyxia and hypoxic-ischemic encephalopathy. Front Neurol 2015;6:264.Web of SciencePubMedGoogle Scholar

About the article

Corresponding author: Damien Bouvier, MD, PhD, Service de Biochimie Médicale, Centre de Biologie, CHU Gabriel Montpied, 58 Rue Montalembert, 63000 Clermont-Ferrand, France; Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France; and Université Clermont Auvergne, Faculty of Medicine, CNRS 6293, INSERM 1103, GReD, Clermont-Ferrand, France, Phone: +33 4 73 75 48 82, Fax: +33 4 73 75 18 55


Received: 2019-07-18

Accepted: 2019-09-30

Published Online: 2019-10-17


Funding Source: Institute for Human Development, Child and Youth Health

Award identifier / Grant number: NRFHPG-78880

This work was supported by the Canadian Institutes of Health Research (CIHR, Healthy Pregnancy Initiative from the Institute for Human Development, Child and Youth Health, Funder Id: http://dx.doi.org/10.13039/501100000031, Grant number: NRFHPG-78880). The authors thank Roche Diagnostics (Laval, Canada) for providing the s100 kits.


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.


Citation Information: Clinical Chemistry and Laboratory Medicine (CCLM), 20190737, ISSN (Online) 1437-4331, ISSN (Print) 1434-6621, DOI: https://doi.org/10.1515/cclm-2019-0737.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in