Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Current Directions in Biomedical Engineering

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Buzug, Thorsten M. / Haueisen, Jens / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Kraft, Marc / Lenarz, Thomas / Leonhardt, Steffen / Malberg, Hagen / Penzel, Thomas / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Urban, Gerald A.


CiteScore 2018: 0.47

Source Normalized Impact per Paper (SNIP) 2018: 0.377

Open Access
Online
ISSN
2364-5504
See all formats and pricing
More options …

Video magnification for intraoperative assessment of vascular function

Ady Naber
  • Corresponding author
  • Karlsruhe Institute of Technology (KIT), Institute of Biomedical Engineering (IBT), Kaiserstrasse 12 in 76135 Karlsruhe, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Werner Nahm
  • Karlsruhe Institute of Technology (KIT), Institute of Biomedical Engineering (IBT), Kaiserstrasse 12 in 76135 Karlsruhe, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-09-07 | DOI: https://doi.org/10.1515/cdbme-2017-0036

Abstract

In neurovascular surgery the intraoperative fluorescence angiography has been proven to be a reliable contact-free optical imaging technique to visualize vascular blood-flow. This angiography is obtained by injecting a fluorescence dye e.g. indocyanine green and using an infrared camera system to visualize the fluorescence inside the vessel. Obviously this requires a medical approved dye and an additional camera setup and therefore generating risks and costs. Hence, the aim of our research is to develop a comparable technique for assessing the vascular function. This approach would not require dye nor an additional infrared camera setup. It is achieved by first preprocessing the video data of a camera that records only the visible spectrum and then filter it spatially as well as temporally. The prepared data is again processed to extract information about the vascular function and visualize it. This method would provide an option to compute and visualize the vascular function using the data recorded in the visible spectrum by the surgical microscopes. Given this contact-free optical imaging system, physiological information can be easily provided to the surgeon without an additional setup. In the case of comparable results with the state-of-the-art, this technique provides a straightforward optical intraoperative angiography. Further no drug approval is needed since no dye is injected.

Keywords: camera-based; intraoperative; diagnostic; intraoperative angiography; blood flow; video processing

About the article

Published Online: 2017-09-07


Citation Information: Current Directions in Biomedical Engineering, Volume 3, Issue 2, Pages 175–178, ISSN (Online) 2364-5504, DOI: https://doi.org/10.1515/cdbme-2017-0036.

Export Citation

©2017 Ady Naber et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in