Jump to ContentJump to Main Navigation
Show Summary Details
Weitere Optionen …

Current Directions in Biomedical Engineering

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering

Editor-in-Chief: Dössel, Olaf

Wissenschaftlicher Beirat: Augat, Peter / Buzug, Thorsten M. / Haueisen, Jens / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Kraft, Marc / Lenarz, Thomas / Leonhardt, Steffen / Malberg, Hagen / Penzel, Thomas / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Urban, Gerald A.


CiteScore 2018: 0.47

Source Normalized Impact per Paper (SNIP) 2018: 0.377

Open Access
Online
ISSN
2364-5504
Alle Formate und Preise
Weitere Optionen …

Determination of EPID convolution kernels for portal imaging using carbon target bremsstrahlung

Sascha Lüdeke / Vanessa Wyrwoll / Tenzin S. Stelljes / Hui Khee Looe / Dietrich Harder / Björn Poppe
Online erschienen: 07.09.2017 | DOI: https://doi.org/10.1515/cdbme-2017-0046

Abstract

Improving the accuracy and reproducibility during patient positioning is of paramount importance. Hence, the goal of this work is to characterize the aspects of image blurring occurring during carbon target bremsstrahlung portal imaging and to assess the applicability of a deconvolution algorithm. Blurring effects involved in this method of portal imaging are electron scattering inside the EPID, geometric blurring due to the photon source size and photon scattering inside the patient. These effects can all be described by convolutions using as the convolutional kernel a Lorentz function, whose FWHM is 2λ. The λ values measured for these effects range from 0.2 mm to 0.45 mm, and an iterative 2D-deconvolution of carbon target portal images was performed accordingly. A significant decrease in the image blurring of test objects has been achieved and confirmed by analyzing the RMTF. However for clinical images, the deconvolution method is presently faced with the problem of the associated increase of image noise.

Keywords: EPID; deconvolution; portal imaging; carbon target; iterative

Artikelinformationen

Online erschienen: 07.09.2017


Quellenangabe: Current Directions in Biomedical Engineering, Band 3, Heft 2, Seiten 221–225, ISSN (Online) 2364-5504, DOI: https://doi.org/10.1515/cdbme-2017-0046.

Zitat exportieren

©2017 Sascha Lüdeke et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Kommentare (0)